判断空间一点是否在任意角度的长方体内

该博客介绍了如何使用线性代数判断空间中一点是否位于任意角度的长方体内,通过判断点与三个法线的夹角余弦值符号来实现。文中详细解释了数学原理,包括三个不共线点确定平面的方程,以及如何用超过三个点拟合平面,并提供了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

几何解释

如下图所示,我们其实只需要判断一个点是否在3组平行平面的同一侧即可以判断(前/后面,左/右面,上/下面),判断的方法比较简单:即利用如图所示中的与法线的夹角,当一个点(如图中点B)在左右面的同一侧时,与法线的夹角都是锐角或钝角;当一个点(如图中点A)在左右面的不同侧时,与法线的夹角必定一个为锐角一个为钝角;实际上,我们不需要判断角度,我们只需要判断余弦值的符号即可,即可以判断向量的内积的符号即可。
判断点是否在两个平行面的同一侧 <=> 判断点与法线的夹角的大小 <=> 判断余弦值的符号 <=> 判断向量内积的符号

引用自:判断点是否包含在任意姿态长方体内部

数学工具

平面方程的一般形式为:
A x + B y + C z + D = 0 Ax+By+Cz+D=0 Ax+By+Cz+D=0
假设 D ≠ 0 D\neq0 D=0,将 D D D移至 = = =右边,所有系数除以 D D D,并乘以 − 1 -1 1,公式可写为:
A x + B y + C z = 1 Ax+By+Cz=1 Ax+By+Cz=1

三个不共线的点确定一个平面

假设已知不共线三点: ( x 1 , y 1 , z 1 ) , ( x 2 , y 2 , z 2 ) , ( x 3 , y 3 , z 3 ) (x_{1},y_{1},z_{1}),(x_{2},y_{2},z_{2}),(x_{3},y_{3},z_{3}) (x1,y1,z1)(x2,y2,z2)(x3,y3,z3),可列出一组三元一次方程:
A x 1 + B y 1 + C z 1 = 1 A x 2 + B y 2 + C z 2 = 1 A x 3 + B y 3 + C z 3 = 1 Ax_{1}+By_{1}+Cz_{1}=1\newline Ax_{2}+By_{2}+Cz_{2}=1\newline Ax_{3}+By_{3}+Cz_{3}=1 Ax1+By1+Cz1=1Ax2+By2+

在MATLAB中,计算长方体在三维空间中相对于任意观察角度的投影面积通常涉及到向量数学和几何变换。假设长方体有三个边长(a、b、c),并且有一个单位方向向量(u,v,w)表示观察的角度,可以按照以下步骤进行: 1. **坐标转换**: - 将长方体的顶从原坐标系(可能为[x,y,z])转换到新的观察坐标系,这个新坐标系的Z轴沿着`u`, Y轴沿着`v`, X轴沿着`w`。 2. **投影**: - 对每个顶计算其在观察坐标系下的XZ平面(即Y=0)的坐标,这将给出投影后的二维集合。 3. **确定边界**: - 找出所有投影后的顶,它们会构成新的图形的边界线段,可能是直线或折线。 4. **计算面积**: - 对于每个线段,可以计算其长度,然后乘以对应的宽度(这里应该是长方体的短边长)。最后,所有线段长度乘以其对应宽的最小值即为投影面积。 以下是一个简化的MATLAB示例代码,假设已知长方体的边长和方向向量: ```matlab function area = projectVolume(a, b, c, u, v, w) % 转换顶到观察坐标系 vertices = [a*[1,0,0], b*[0,1,0], c*[0,0,1]]; projected = vertices + (vertices - ones(3,1) * dot(vertices, [u; v; w])) * [u; v; w]; % 取XZ平面的投影 projected_XZ = projected(:,[1,3]); % 计算边界线段 line_segs = diff(projected_XZ, 1); % 最小宽度和总长度 min_width = min(abs(line_segs(:,2))); total_length = sum(sqrt(sum(line_segs.^2,2))); % 面积 area = total_length * min_width; end % 示例 a = 1; % 长 b = 1; % 宽 c = 1; % 高 u = [1/sqrt(3), 1/sqrt(3), 1/sqrt(3)]; % 观察角度 area = projectVolume(a, b, c, u, v, w); % 注意这里v和w需要定义 ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值