目标跟踪学习笔记之卡尔曼滤波

本文详细介绍了卡尔曼滤波在目标跟踪中的作用,包括高斯白噪声、协方差的概念,以及先验估计和后验估计的定义。通过解释最小均方差和矩阵迹的重要性,阐述了卡尔曼滤波如何处理高维数据估计问题。同时,讨论了为何噪声通常假设为高斯分布,并提及最大似然估计的理论基础。
摘要由CSDN通过智能技术生成

链接:JR_Cheng的目标跟踪学习笔记之卡尔曼滤波 - 简书 (jianshu.com)

(84条消息) 图像处理之目标跟踪(一)之卡尔曼kalman滤波跟踪(主要为知识梳理)(转载)_Coming_is_winter的博客-CSDN博客_卡尔曼跟踪

1.高斯白噪声:噪声与时间不相关,且只用均值和协方差就可以准确地为幅值建模

2.协方差:协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况;(方差可视作随机变量x关于自身的协方差)

3.为什么要引入协方差的公式?

    我们对一个一维的数进行估计时,若引入噪声的影响,假设其服从高斯分布,则考虑其中的方差即可;若是对一个高维的数据进行估计,就要考虑各个维度对其均值的偏离程度,这就引入了协方差的概念。

4.先验估计

    先验状态估计是根据系统过程原理或者经验得到的估计值,实际应用中可以通过传感器数据去预测下一时刻的数据

5.后验估计

    后验状态估计是结合之前的先验状态估计值,再加权测量值得到一个理论上最接近真实值的结果

6.均方差

    “误差”的平方的期望值,最小均方差估计就是指估计参数时要使得估计出来的模型和真实值之间的误差平方期望值最小。

7.矩阵的迹

    矩阵主对角线上的所有元素之和称之为矩阵的迹

8.为什么噪声要服从高斯分布?

    在进行参数估计的时候,估计的一种标准叫最大似然估计,它的核心思想就是你手里的这些相互间独立的样本既然出现了,那就说明这些样本概率的乘积应该最大(概率大才出现嘛)。如果样本服从概率高斯分布,对他们的概率乘积取对数ln后,你会发现函数形式将会变成一个常数加上样本最小均方差的形式。因此,看似直观上很容易理解的最小均方差理论上来源就出于那里。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

祺格格

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值