误差理论实际应用公式

————摘自费业泰《误差理论与数据处理》

一、直接测量值的误差

真误差 δ = l i − L \delta=l_i-L δ=liL (往往不可得)
残余误差 v i = l i − l ˉ v_i=l_i-\bar{l} vi=lilˉ
其中, l i l_i li为第I次测量值,L为真值, l ˉ \bar{l} lˉ为n次测量平均值

贝塞尔公式
σ = ∑ 1 n v i 2 n − 1 \sigma=\sqrt{\frac{\sum\limits_1^n{v_i^2}}{n-1}} σ=n11nvi2
用于求单次测量的标准差估计值,衡量一次测量的精度或不确定程度。

多次测量平均值的标准差: σ x ˉ = σ n \sigma_{\bar{x}}=\frac{\sigma}{\sqrt n} σxˉ=n σ

二、间接测量值的误差

形式: y = f ( x 1 , x 2 , x 3 , . . . , x n ) y=f(x_1,x_2,x_3,...,x_n) y=f(x1,x2,x3,...,xn)
其中,y为间接测量值, x i x_i xi为直接测量值
系统误差 Δ y = ∂ f ∂ x 1 Δ x 1 + ∂ f ∂ x 2 Δ x 2 + . . . + ∂ f ∂ x n Δ x n \Delta y=\frac{\partial f}{\partial x_1}\Delta x_1+ \frac{\partial f}{\partial x_2}\Delta x_2+...+ \frac{\partial f}{\partial x_n}\Delta x_n Δy=x1fΔx1+x2fΔx2+...+xnfΔxn

随机误差的标准差 σ y = ( ∂ f ∂ x 1 ) 2 σ x 1 2 + ( ∂ f ∂ x 2 ) 2 σ x 2 2 + . . . + ( ∂ f ∂ x n ) 2 σ x n 2 \sigma_y=\sqrt{(\frac{\partial f}{\partial x_1})^2\sigma_{x_1}^2+ (\frac{\partial f}{\partial x_2})^2\sigma_{x_2}^2+...+ (\frac{\partial f}{\partial x_n})^2\sigma_{x_n}^2 } σy=(x1f)2σx12+(x2f)2σx22+...+(xnf)2σxn2 要求:各测量值的随机误差不相关;

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值