【机器学习】西瓜书集成学习的误差-分歧分解公式推导

本文详细推导了西瓜书中关于集成学习的误差-分歧分解公式,解析了从公式(8.28)到(8.31)的转换过程,通过特殊情况简化和对比不同表达式,揭示了如何从E(h|x) - A(h|x)得到E(H|x)的内在联系,强调了加权平均方法在回归学习中的应用。
摘要由CSDN通过智能技术生成
前言

原文中,根据公式(8.28)写出了集成的“分歧”定义为:
A ‾ ( h ∣ x ) = ∑ i = 1 T w i ( h i ( x ) − H ( x ) ) 2 \overline A(h|x) = \sum\limits_{i=1}^{T}w_i(h_i(x)-H(x))^2 A(hx)=i=1Twi(hi(x)H(x))2

结果在公式(8.31)突然变成,将分歧和误差联系上了,看得我非常懵逼
A ‾ ( h ∣ x ) = ∑ i = 1 T w i E ( h i ∣ x ) − E ( H ∣ x ) \overline A(h|x) = \sum\limits_{i=1}^{T}w_iE(h_i|x)-E(H|x) A(hx)=i=1TwiE(hix)E(Hx)

所以,本文主要解释西瓜书第185页公式(8.31)的第一行是怎么来的

公式

首先,将公式(8.31)的第二行换个写法,我们叫他为公式(a),如果能够证明公式(a)是正确的,那么公式(8.31)的第一行也就是成立的:
E ‾ ( h ∣ x ) − A ‾ ( h ∣ x ) = E ( H ∣ x ) \overline E(h|x) -\overline A(h|x) = E(H|x) E(hx)A(hx)=E(Hx)

已知:
E ‾ ( h ∣ x ) = ∑ i = 1 T w i ( f ( x ) − h i ( x ) ) 2 \overline E(h|x) = \sum\limits_{i=1}^{T}w_i(f(x)-h_i(x))^2 E(hx)=i=1Twi(f(x)hi(x))2
A ‾ ( h ∣ x ) = ∑ i = 1 T w i ( h i ( x ) − H ( x ) ) 2 \overline A(h|x) = \sum\limits_{i=1}^{T}w_i(h_i(x)-H(x))^2 A(hx)=i=1Twi(hi(x)H(x))2

所以:

E ‾ ( h ∣ x ) − A ‾ ( h ∣ x ) \overline E(h|x) -\overline A(h|x) E(hx)A(hx)$

= ∑ i = 1 T w i ( f ( x ) − h i ( x ) ) 2 − ∑ i = 1 T w i ( h i ( x ) − H ( x ) ) 2 = \sum\limits_{i=1}^{T}w_i(f(x)-h_i(x))^2 - \sum\limits_{i=1}^{T}w_i(h_i(x)-H(x))^2 =i=1Twi(f(x)hi(x))2i=1Twi(hi(x)H(x))2

求和号 ∑ i = 1 T \sum\limits_{i=1}^{T} i=1T和权重 w i w_i wi提到前面,得:

= ∑ i = 1 T w i [ ( f ( x ) − h

  • 14
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值