CP14.正交向量与正交子空间

在这里插入图片描述

1.正交向量

正交就是垂直,向量的正交: x x x y y y正交,则 x T y = y T x = 0 x^Ty=y^Tx=0 xTy=yTx=0。最常见的例子就是直角三角形中的勾股定理,设长边向量为 x x x,短边为 y y y,斜边为 x + y x+y x+y,向量的长度用 ∣ ∣ x ∣ ∣ = x T x ||x||=x^Tx ∣∣x∣∣=xTx表示: ∣ ∣ x ∣ ∣ 2 + ∣ ∣ y ∣ ∣ 2 = ∣ ∣ x + y ∣ ∣ 2 ( 1 ) ||x||^2+||y||^2=||x+y||^2(1) ∣∣x2+∣∣y2=∣∣x+y2(1)
实例: x = [ 1 2 3 ] , y = [ 2 − 1 0 ] , x + y = [ 3 1 3 ] , ∣ ∣ x ∣ ∣ 2 = 14 , ∣ ∣ y ∣ ∣ 2 = 15 , ∣ ∣ x + y ∣ ∣ 2 = 19 x=\begin{bmatrix}1\\2\\3\end{bmatrix},y=\begin{bmatrix}2\\-1\\0\end{bmatrix},x+y=\begin{bmatrix}3\\1\\3\end{bmatrix},||x||^2=14,||y||^2=15,||x+y||^2=19 x= 123 y= 210 x+y= 313 ,∣∣x2=14,∣∣y2=15,∣∣x+y2=19
将式1展开:
x T x + y T y = ( x + y ) T ( x + y ) = x T x + x T y + y T x + y T y x^Tx+y^Ty=(x+y)^T(x+y)=x^Tx+x^Ty+y^Tx+y^Ty xTx+yTy=(x+y)T(x+y)=xTx+xTy+yTx+yTy移项可得
x T y + y T x = 0 x^Ty+y^Tx=0 xTy+yTx=0实际上 x T y x^Ty xTy y T x y^Tx yTx的计算结果是一样的,因此得出:
2 x T y = 0 即 x T y = 0 2x^Ty=0即x^Ty=0 2xTy=0xTy=0

2.正交子空间

两个子空间正交,则两空间内的任意两向量都正交。黑板和地板并不是三维空间的正交子空间,他们有共线的部分,连接线同时属于两个子空间,它自己不可能垂直于自己(除非是0向量)。

2.1零空间与行空间正交关系

矩阵的零空间与行空间是正交的。矩阵 A A A的行空间就是其各列的线性组合,零空间是满足 A X = 0 AX=0 AX=0的所有解,本质上可以写成:
[ A 的第一行 A 的第二行 . . . A 的第 n 行 ] [ x 1 x 2 . . . x N ] = 0 \begin{bmatrix}A的第一行\\A的第二行\\...\\A的第n行\end{bmatrix}\begin{bmatrix}x_1\\x_2\\...\\x_N\end{bmatrix}=0 A的第一行A的第二行...A的第n x1x2...xN =0
因此 A A A的行空间与零空间正交,这一点从开篇图片也能看出来。矩阵的行空间和零空间实际上是把一个 R n R^n Rn空间分割成了两个正交子空间。例如矩阵:
A = [ 1 2 5 2 4 10 ] , r a n k ( A ) = 1 , r a n k ( N ( A ) ) = 2 A=\begin{bmatrix}1&2&5\\2&4&10\end{bmatrix},rank(A)=1,rank(N(A))=2 A=[1224510]rank(A)=1,rank(N(A))=2
X = [ − 2 1 0 ] [ − 5 0 1 ] 是它的一组解,其零空间为 N ( A ) = c 1 [ − 2 1 0 ] + c 2 [ − 5 0 1 ] X=\begin{bmatrix}-2\\1\\0\end{bmatrix}\begin{bmatrix}-5\\0\\1\end{bmatrix}是它的一组解,其零空间为N(A)=c_1\begin{bmatrix}-2\\1\\0\end{bmatrix}+c_2\begin{bmatrix}-5\\0\\1\end{bmatrix} X= 210 501 是它的一组解,其零空间为N(A)=c1 210 +c2 501
矩阵行空间为 R ( A ) = c 3 [ 1 2 5 ] R(A)=c_3\begin{bmatrix}1&2&5\end{bmatrix} R(A)=c3[125]
矩阵的行空间和零空间不止是简单的正交关系,二者的维数之和是n,因此又称行空间和零空间为 R n R^n Rn空间内的正交补。

3. A T A A^TA ATA矩阵

如果一个方程组 A X = b AX=b AX=b无解,意味着 b b b根本不在 A A A的列空间里。实际上有很多现实的例子,比如说测量一个卫星的位置,测量了一千次,而实际上可能只需要6个参数去确定卫星的实际位置;随着测量次数的增多,方程组的规模越来越大,那么 b b b里面有可能混入太多的“坏数据”导致其不在 A A A的列空间中。如何在无解的情况下强行去求解呢?这就需要用到 A T A A^TA ATA
例如:
A = [ 1 1 1 2 1 5 ] A=\begin{bmatrix}1&1\\1&2\\1&5\end{bmatrix} A= 111125 ,可以直接看出, A A A不满秩,所以 A X = b AX=b AX=b无解,利用 A T A A^TA ATA改造原方程组:
A T A X ^ = A T b A^TA\hat{X}=A^Tb ATAX^=ATb
值得一提的是,改造过后的解,已经跟原来的解不是一个东西了,所以用 X ^ \hat{X} X^来表示。
A T A = [ 3 8 8 30 ] A^TA=\begin{bmatrix}3&8\\8&30\end{bmatrix} ATA=[38830]很明显这是一个可逆矩阵,因此可以求解方程组了。但 A T A A^TA ATA并不是总能得到可逆矩阵,例如:
A = [ 1 3 1 3 1 3 ] , A T A = [ 3 9 9 27 ] A=\begin{bmatrix}1&3\\1&3\\1&3\end{bmatrix},A^TA=\begin{bmatrix}3&9\\9&27\end{bmatrix} A= 111333 ATA=[39927]这并不是一个可逆矩阵,因此方程组仍然无解。从上面的例子可以看出,当 A A A的列是无关组时,才可以使用 A T A A^TA ATA构造可逆矩阵。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值