线性代数mit课程笔记

1.四个空间:

零空间,列空间,行空间,左零空间。

有一个A矩阵m*n

(1)零空间是指满足Ax=0的线性组合所组成的空间,维数是n-r

  (2)列空间,是指列向量的线性组合所产生的空间,维数是r

(3)行空间同理,是行向量所组成的空间,维数也是r

(4)左零空间,该概念较特殊,是指转置A*x=0中解的向量所组成的空间,空间维数是m-r

有两种方法可以求得,第一种直接求方程的解,可以得到基且求得维数。

第二种通过高斯-诺当消元法,通过[A I]=[R E]来求得E,而在这里相当于存在一个EA=R的可能性,但这个跟左零空间有啥关系呢,为什么可以从这个里面找到解呢,这是因为转置(转置A*x)=0的话,就等于转置x*A=0,所以就相当于找到能左乘A得零的解,并求其空间,所以这里就是E的最下方m-r个向量为解。这方面较难一次性看清,可结合https://blog.csdn.net/sunbobosun56801/article/details/82845835来进行理解。

2.勾股定理的另一种表达方式

XTX+YTY=(X+Y)T(X+Y)=(XT+YT)(X+Y)=XTX+XTY+YTX+YTY

3.第十四讲开始讲解投影和最小二乘法等内容,较为重要

R(ATA)=R(A)

投影:

假设求向量b在向量a上的投影为向量pa

所以存在该等式aT(b-pa)=0

所以p=aTb/(aTa)

投影得到的向量为aaTb/(aTa)

设Pb=pa,P为投影矩阵,可得投影矩阵为aaT/aTa,该矩阵只需与所要的向量相乘即可。

在高维空间里,也是类似的过程:

AT(b-Ax)=0

x=(ATA)^-1ATb

p=Ax(A是列向量,x是线性组合)

p=A(ATA)^-1ATb

同理可得投影矩阵为A(ATA)^-1AT(在二维平面中,A为一维向量,所以才可以放在分母)

4.最小二乘

问题:求得过数据点(1,1)(2,2)(3,2)的直线,(1,1/1,2/1,2)(x/y)=(1/2/3)

即求得x与y,但该方程无解,所以需要让(1/2/3)在A上面有投影,才能是A中列向量的线性组合,所以可直接通过求x=(ATA)^-1ATb,从而求得x与y。

5.若A的列向量线性无关,则ATA为可逆矩阵(其实可以这么记,R(ATA)=R(A)

6.施密特正交化

就是求得B=b-ATb/(ATA)A

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值