线代引论:chapter 3.5四个子空间的维度

四个子空间

行空间,零空间是是Rn的子空间

列空间,转置矩阵的零空间是Rm的子空间

Rx的x取决于向量分量数

(将列空间和转置矩阵的零空间看成对原矩阵的行进行操作)

四个子空间关系:

矩阵A的列空间等于转置矩阵AT的行空间,矩阵的行的零空间(行线性组合为0的解向量组成的空间)就是转置矩阵的零空间。

矩阵的行等于转置矩阵的列

四空间的维度:

1.A的列向量空间=行向量空间维度=r

原因:秩r=主行数=主列数=基底向量数=行列空间维度

主行数是行向量空间基底,主列是列向量基底

行向量基底数=列向量基底数,所以行列向量空间维度相同

2.AT的零空间维度是n-r AT的零空间(left nullspace)维度是m-r

理解:A的总变量数是n,AT的总变量是m

3.行空间维度加零空间维度等于Rn的空间维度

列空间维度+零空间维度=n=解的分量数

行空间维度+转置矩阵零空间维度=m=解的分量数

(Rx的x取决于向量分量数)

转置对解的影响

Ax=0则xTAT=0T 或者说ATx=0;xTA=0T

解左移且转置,0向量也转置

空间与基底

行空间基底就是主行,列空间基底是主列,零空间基底是n-r个特解,转置矩阵零空间基底是m-r个特解。

RT的列空间就是R的行空间,每行乘一个系数的再进行组合的结果为0,系数就是它的解

因此已知特解数,r 和m(或n)知2求3

注意:C(A)!=C(R)

但两者有一样的r和基底

用线点连线图表示关联矩阵(incidence matrix):

节点数表示m,边数表示n

可以通过矢量原则看出主元主列(教材在此处未展开)

1r的矩阵可以等于u*vT:

u和vT都是r=1

2r的矩阵可以看作1r的矩阵加1r的矩阵

将A=CR

C[u1 u2 u3 ...un]

A=row1*u1+row2*u2+....=a1+a2+...

rown为矩阵R中的n行,an为rank=1的矩阵

(矩阵乘法中的右边是竖的,左边是横的相乘.)

总结:课本的内容大多都是对一样事物反复从不同的角度的讲,实际上最重要的是红色标注那一条,其余都可以推出来。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值