CP.16投影矩阵补充

CP15中讲了投影矩阵的初步,最后得到一个公式 P m = A ( A T A ) − 1 A T P_m=A(A^TA)^{-1}A^T Pm=A(ATA)1AT,用投影矩阵左乘向量 b b b,本质上是把向量 b b b P m P_m Pm的列空间投影。存在两种情况:
1. b b b本来就在 A A A的列空间内,满足 A x = b Ax=b Ax=b,那么得到的就是 b b b的本身;
2. b b b垂直于 A A A的列空间,前面讲过,矩阵的列空间和其自身的左零空间垂直,那么 b b b就是位于 A A A的左零空间内,即 A T b = 0 A^Tb=0 ATb=0,投影得到的就是0了。
情况1:
P m b = A ( A T A ) − 1 A T b = A ( A T A ) − 1 A T A x = A ( ( A T A ) − 1 A T A ) x = A x = b \begin{align*} P_mb &= A(A^TA)^{-1}A^Tb \\ &= A(A^TA)^{-1}A^TAx \\ &= A((A^TA)^{-1}A^TA)x\\ &=Ax=b \end{align*} Pmb=A(ATA)1ATb=A(ATA)1ATAx=A((ATA)1ATA)x=Ax=b
情况2:
P m b = A ( A T A ) − 1 A T b = A ( A T A ) − 1 ( A T b ) = A ( A T A ) − 1 0 = 0 \begin{align*} P_mb &=A (A^TA)^{-1}A^Tb \\ &= A(A^TA)^{-1}(A^Tb) \\ &=A(A^TA)^{-1}0\\ &=0 \end{align*} Pmb=A(ATA)1ATb=A(ATA)1(ATb)=A(ATA)10=0
b b b投影到了 A A A的列空间中一部分,还剩一部分为 e = ( I − P m ) b e=(I-P_m)b e=(IPm)b映射在 A A A的左零空间, e e e代表将 b b b投影成 p p p的误差,如果 b b b完全与 p p p贴合,那么 e = 0 e=0 e=0
Alt
如果矩阵的列向量是相互垂直的单位向量,则他们一定是线性无关的。这种向量称为标准正交
例如: [ 1 0 0 ] [ 0 1 0 ] [ 0 0 1 ] \begin{bmatrix}1\\0\\0\end{bmatrix}\begin{bmatrix}0\\1\\0\end{bmatrix}\begin{bmatrix}0\\0\\1\end{bmatrix} 100 010 001

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值