1821: [JSOI2010]Group 部落划分 Group

聪聪研究荒岛野人的部落分布,通过地图得知野人被分为K个部落。部落间距离定义为最近居住点的距离。目标是找到使最接近部落间距离最大的划分方法。解题思路涉及最小生成树和并查集的数据结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗。只是,这一切都成为谜团了——聪聪根本就不知道部落究竟是如何分布的。 不过好消息是,聪聪得到了一份荒岛的地图。地图上标注了N个野人居住的地点(可以看作是平面上的坐标)。我们知道,同一个部落的野人总是生活在附近。我们把两个部落的距离,定义为部落中距离最近的那两个居住点的距离。聪聪还获得了一个有意义的信息——这些野人总共被分为了K个部落!这真是个好消息。聪聪希望从这些信息里挖掘出所有部落的详细信息。他正在尝试这样一种算法: 对于任意一种部落划分的方法,都能够求出两个部落之间的距离,聪聪希望求出一种部落划分的方法,使靠得最近的两个部落尽可能远离。 例如,下面的左图表示了一个好的划分,而右图则不是。请你编程帮助聪聪解决这个难题。

Input

第一行包含两个整数N和K(1< = N < = 1000,1< K < = N),分别代表了野人居住点的数量和部落的数量。
接下来N行,每行包含两个正整数x,y,描述了一个居住点的坐标(0 < =x, y < =10000)

Output

输出一行,为最优划分时,最近的两个部落的距离,精确到小数点后两位。

题解:

这题可以用最小生成树的贪心思想,

求出任意两个点之间的距离,排个序,接着用并查集维护。

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=1010;
int n,k;
int a[N],b[N];
struct node{
	int x,y;
	double z;
}sa[N*N];int len=0;
double dis(int x,int y)
{
	return sqrt((a[x]-a[y])*(a[x]-a[y])+(b[x]-b[y])*(b[x]-b[y]));
}
void ins(int x,int y,double z)
{
	len++;
	sa[len].x=x;
	sa[len].y=y;
	sa[len].z=z;
}
int fa[N];
bool cmp(node x,node y)
{
	return x.z<y.z;
}
int findfa(int x)
{
	if(x==fa[x]) return x;
	fa[x]=findfa(fa[x]);
	return fa[x];
}
int main()
{
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++)
	scanf("%d%d",&a[i],&b[i]);
	for(int i=1;i<=n;i++)
	{
		for(int j=i+1;j<=n;j++)
		ins(i,j,dis(i,j));
	}
	sort(sa+1,sa+1+len,cmp);
	for(int i=1;i<=n;i++) fa[i]=i;
	for(int i=1;i<=len;i++)
	{
		int tx=findfa(sa[i].x),ty=findfa(sa[i].y);
		if(tx!=ty)
		{
			if(n>k)
			{
				fa[tx]=ty;
				n--;
			}
			else
			{
				printf("%.2lf",sa[i].z);
				return 0;
			}
		}
	}
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值