Description
聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗。只是,这一切都成为谜团了——聪聪根本就不知道部落究竟是如何分布的。 不过好消息是,聪聪得到了一份荒岛的地图。地图上标注了N个野人居住的地点(可以看作是平面上的坐标)。我们知道,同一个部落的野人总是生活在附近。我们把两个部落的距离,定义为部落中距离最近的那两个居住点的距离。聪聪还获得了一个有意义的信息——这些野人总共被分为了K个部落!这真是个好消息。聪聪希望从这些信息里挖掘出所有部落的详细信息。他正在尝试这样一种算法: 对于任意一种部落划分的方法,都能够求出两个部落之间的距离,聪聪希望求出一种部落划分的方法,使靠得最近的两个部落尽可能远离。 例如,下面的左图表示了一个好的划分,而右图则不是。请你编程帮助聪聪解决这个难题。
Input
第一行包含两个整数N和K(1< = N < = 1000,1< K < = N),分别代表了野人居住点的数量和部落的数量。
接下来N行,每行包含两个正整数x,y,描述了一个居住点的坐标(0 < =x, y < =10000)
Output
输出一行,为最优划分时,最近的两个部落的距离,精确到小数点后两位。
题解:
这题可以用最小生成树的贪心思想,
求出任意两个点之间的距离,排个序,接着用并查集维护。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int N=1010;
int n,k;
int a[N],b[N];
struct node{
int x,y;
double z;
}sa[N*N];int len=0;
double dis(int x,int y)
{
return sqrt((a[x]-a[y])*(a[x]-a[y])+(b[x]-b[y])*(b[x]-b[y]));
}
void ins(int x,int y,double z)
{
len++;
sa[len].x=x;
sa[len].y=y;
sa[len].z=z;
}
int fa[N];
bool cmp(node x,node y)
{
return x.z<y.z;
}
int findfa(int x)
{
if(x==fa[x]) return x;
fa[x]=findfa(fa[x]);
return fa[x];
}
int main()
{
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%d%d",&a[i],&b[i]);
for(int i=1;i<=n;i++)
{
for(int j=i+1;j<=n;j++)
ins(i,j,dis(i,j));
}
sort(sa+1,sa+1+len,cmp);
for(int i=1;i<=n;i++) fa[i]=i;
for(int i=1;i<=len;i++)
{
int tx=findfa(sa[i].x),ty=findfa(sa[i].y);
if(tx!=ty)
{
if(n>k)
{
fa[tx]=ty;
n--;
}
else
{
printf("%.2lf",sa[i].z);
return 0;
}
}
}
}