四、智能体强化学习——单智能体工程实践与部署

  1. 实验环境与工具
  2. 模型部署
  3. 性能指标与评估

搭建强化学习的实验环境、调参与分布式训练,以及将训练好的模型集成到生产系统中并进行监控和评估。
在这里插入图片描述


4.1 实验环境与工具

在实际项目中,构建一个稳定、可扩展的实验环境至关重要。以下是一些常用的工具和方法。

4.1.1 典型环境

  1. OpenAI Gym

    • 最广泛使用的单智能体 RL 环境集合,涵盖了经典控制(CartPole、MountainCar)、 Atari、Box2D 等;
    • 接口规范:env.reset()env.step(action)env.render() 等;
    • 适合初学者算法原型验证
  2. PettingZoo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

由数入道

滴水助江海,心灯渡万世。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值