- 实验环境与工具
- 模型部署
- 性能指标与评估
搭建强化学习的实验环境、调参与分布式训练,以及将训练好的模型集成到生产系统中并进行监控和评估。

4.1 实验环境与工具
在实际项目中,构建一个稳定、可扩展的实验环境至关重要。以下是一些常用的工具和方法。
4.1.1 典型环境
-
OpenAI Gym
- 最广泛使用的单智能体 RL 环境集合,涵盖了经典控制(CartPole、MountainCar)、 Atari、Box2D 等;
- 接口规范:
env.reset()
、env.step(action)
、env.render()
等;
- 适合初学者和算法原型验证。
-
PettingZoo