算法原理
1. 总体框架
融合模型预测控制(MPC)的强化学习(RL)算法框架主要包括以下几个核心部分:
- 环境模型学习:使用RL方法学习环境的动力学模型。
- MPC优化:基于学习到的模型,使用MPC方法来优化控制策略。
- 策略更新:将MPC生成的控制序列用于更新RL策略。
2. 具体步骤
- 初始化:初始化环境模型、RL策略和MPC优化器。
- 交互与环境模型更新:
- RL策略交互:智能体根据当前策略与环境交互,收集数据。
- 模型更新:使用收集到的数据更新环境模型。
- MPC优化:
- 预测与优化:使用更新后的环境模型预测未来状态,并求解优化问题,生成控制序列。