融合模型预测控制 (MPC) 的 RL 算法

算法原理

1. 总体框架

融合模型预测控制(MPC)的强化学习(RL)算法框架主要包括以下几个核心部分:

  • 环境模型学习:使用RL方法学习环境的动力学模型。
  • MPC优化:基于学习到的模型,使用MPC方法来优化控制策略。
  • 策略更新:将MPC生成的控制序列用于更新RL策略。
2. 具体步骤
  1. 初始化:初始化环境模型、RL策略和MPC优化器。
  2. 交互与环境模型更新
    • RL策略交互:智能体根据当前策略与环境交互,收集数据。
    • 模型更新:使用收集到的数据更新环境模型。
  3. MPC优化
    • 预测与优化:使用更新后的环境模型预测未来状态,并求解优化问题,生成控制序列。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

由数入道

滴水助江海,心灯渡万世。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值