融合模型预测控制 (MPC) 的 RL 算法

算法原理

1. 总体框架

融合模型预测控制(MPC)的强化学习(RL)算法框架主要包括以下几个核心部分:

  • 环境模型学习:使用RL方法学习环境的动力学模型。
  • MPC优化:基于学习到的模型,使用MPC方法来优化控制策略。
  • 策略更新:将MPC生成的控制序列用于更新RL策略。
2. 具体步骤
  1. 初始化:初始化环境模型、RL策略和MPC优化器。
  2. 交互与环境模型更新
    • RL策略交互:智能体根据当前策略与环境交互,收集数据。
    • 模型更新:使用收集到的数据更新环境模型。
  3. MPC优化
    • 预测与优化:使用更新后的环境模型预测未来状态,并求解优化问题,生成控制序列。
### 四足机器人中的强化学习RL)与模型预测控制MPC) #### 强化学习RL)在四足机器人上的应用 强化学习是一种让代理通过与环境互动来学习最优行为策略的方法。对于四足机器人而言,这种技术允许设备自主探索其周围环境,并逐渐优化自身的移动方式以适应不同地形条件[^1]。 ```python import gym from stable_baselines3 import PPO env = gym.make('QuadrupedWalk-v0') model = PPO("MlpPolicy", env, verbose=1) model.learn(total_timesteps=10_000) obs = env.reset() for i in range(1000): action, _states = model.predict(obs, deterministic=True) obs, rewards, dones, info = env.step(action) if dones: break ``` 这段代码展示了如何利用PPO算法训练一个简单的四足行走任务。此过程涉及大量的尝试错误周期,在这个过程中,机器人学会调整自己的姿态和步伐长度等参数,从而更好地完成指定的任务目标[^3]。 #### 模型预测控制MPC)的作用机制 相比之下,MPC依赖于精确的物理模拟以及对未来状态变化趋势的理解来进行决策制定。它通常用于那些可以被较好地建模并且动态特性相对容易预测的情况之下。具体来说就是给定当前的状态估计值之后,计算出一系列未来可能发生的事件序列及其对应的控制输入向量;接着从中挑选能使成本函数最小化的那组动作作为实际执行指令发出[^2]。 ```matlab function u = mpcController(x, A, B, Q, R, Np) % Define prediction horizon and control horizon Nc = min(Np/2, 5); % Control moves are limited to half of the prediction horizon or at most five steps ahead. % Initialize variables for optimization problem setup. H = blkdiag(Q, eye(size(B, 2))*R); f = [-Q*x'; zeros(length(u), 1)]; % Solve quadratic programming (QP) problem using built-in solver. u_optimal = quadprog(H, f); % Extract first element as current optimal input. u = u_optimal(1:size(B, 2)); end ``` 上述MATLAB脚本定义了一个基本形式下的线性二次高斯(LQR)-类型的有限时间域内的MPC控制器设计方案。这里假设系统的转移矩阵`A`, 输入影响系数矩阵`B`均已知,并且存在加权项`Q`(状态偏差惩罚)`R`(操作代价),这些构成了评价标准的一部分。此外还设定了预测步数`Np`用来决定考虑多远未来的状况[^4]。 #### 结合两者优势的可能性 值得注意的是,虽然单独使用任一方法都有各自的优势领域,但是当把它们结合起来时,则有可能创造出更为灵活高效的解决方案。例如,可以通过先用MPC获得初步解再以此为基础进一步微调得到最终结果的方式,既发挥了前者快速响应的优点又继承后者长期规划的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

由数入道

滴水助江海,心灯渡万世。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值