【opencv】教程代码 —ml (主成分分析、支持向量机、非线性支持向量机)

 1. introduction_to_pca.cpp  主成分分析

f413a9b3dcae27dd0c4b4a9ae2bc7e13.png

a8c24e187bf9bdc621952a8f113a27ea.png

811132a96e6e9d6b190226f44e70dd2b.png

/**
 * @file introduction_to_pca.cpp
 * @brief 这个程序演示了如何使用OpenCV PCA 提取物体的方向
 * @author OpenCV团队
 */


// 包含OpenCV函数库所需要的头文件
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include <iostream> // 包含输入输出流的头文件


// 使用std和cv的命名空间,这样我们就可以直接使用它们提供的方法,不用每次都写std::和cv::
using namespace std;
using namespace cv;


// 函数声明
void drawAxis(Mat&, Point, Point, Scalar, const float);
double getOrientation(const vector<Point> &, Mat&);


/**
 * @function drawAxis
 * @brief 绘制轴线的函数
 */
void drawAxis(Mat& img, Point p, Point q, Scalar colour, const float scale = 0.2)
{
    //! [visualization1]
    // 计算以弧度为单位的角度
    double angle = atan2((double)p.y - q.y, (double)p.x - q.x); // p到q的线段角度


    // 计算p和q之间的直线的长度
    double hypotenuse = sqrt((double)(p.y - q.y) * (p.y - q.y) + (p.x - q.x) * (p.x - q.x));


    // 这里通过缩放因子来延长线段的长度
    q.x = (int)(p.x - scale * hypotenuse * cos(angle)); // 计算新的q点的x坐标
    q.y = (int)(p.y - scale * hypotenuse * sin(angle)); // 计算新的q点的y坐标


    // 绘制p点到新q点的直线,这是主线段
    line(img, p, q, colour, 1, LINE_AA);


    // 创建箭头的勾
    // 根据箭头角度计算箭头勾的端点,并绘制箭头勾的第一部分
    p.x = (int)(q.x + 9 * cos(angle + CV_PI / 4)); // 计算箭头勾的一个端点的x坐标
    p.y = (int)(q.y + 9 * sin(angle + CV_PI / 4)); // 计算箭头勾的一个端点的y坐标
    line(img, p, q, colour, 1, LINE_AA); // 绘制箭头勾的第一部分


    // 绘制箭头勾的第二部分
    p.x = (int)(q.x + 9 * cos(angle - CV_PI / 4)); // 计算箭头勾的另一个端点的x坐标
    p.y = (int)(q.y + 9 * sin(angle - CV_PI / 4)); // 计算箭头勾的另一个端点的y坐标
    line(img, p, q, colour, 1, LINE_AA); // 绘制箭头勾的第二部分
    //! [visualization1]
}


/**
 * @function getOrientation
 * @brief 获取方向的函数
 */
double getOrientation(const vector<Point> &pts, Mat &img)
{
    //! [pca]
    // 构造PCA分析使用的数据缓冲区, 每个点的x和y坐标为一行
    int sz = static_cast<int>(pts.size()); // 获取点集的大小
    Mat data_pts = Mat(sz, 2, CV_64F); // 创建Mat对象用于存储点坐标
    for (int i = 0; i < data_pts.rows; i++) // 遍历所有点
    {
        data_pts.at<double>(i, 0) = pts[i].x; // 将点的x坐标放入Mat对象
        data_pts.at<double>(i, 1) = pts[i].y; // 将点的y坐标放入Mat对象
    }


    // 执行PCA分析
    PCA pca_analysis(data_pts, Mat(), PCA::DATA_AS_ROW); // 使用点集进行PCA分析


    // 获取物体的中心点
    Point cntr = Point(static_cast<int>(pca_analysis.mean.at<double>(0, 0)), // 计算平均值点的x坐标
                      static_cast<int>(pca_analysis.mean.at<double>(0, 1))); // 计算平均值点的y坐标


    // 储存特征值和特征向量
    vector<Point2d> eigen_vecs(2); // 创建存储特征向量的向量
    vector<double> eigen_val(2); // 创建存储特征值的向量
    for (int i = 0; i < 2; i++) // 只考虑x和y坐标,因此遍历两个维度
    {
        eigen_vecs[i] = Point2d(pca_analysis.eigenvectors.at<double>(i, 0), // 获取第i个特征向量的x分量
                                pca_analysis.eigenvectors.at<double>(i, 1)); // 获取第i个特征向量的y分量


        eigen_val[i] = pca_analysis.eigenvalues.at<double>(i); // 获取第i个特征值
    }
    //! [pca]


    //! [visualization]
    // 画出主成分,也即特征向量方向
    circle(img, cntr, 3, Scalar(255, 0, 255), 2); // 在中心点画个小圆标记
    // 根据特征值和特征向量计算两个特征点的位置
    Point p1 = cntr + 0.02 * Point(static_cast<int>(eigen_vecs[0].x * eigen_val[0]), static_cast<int>(eigen_vecs[0].y * eigen_val[0]));
    Point p2 = cntr - 0.02 * Point(static_cast<int>(eigen_vecs[1].x * eigen_val[1]), static_cast<int>(eigen_vecs[1].y * eigen_val[1]));
    // 画出两个特征向量构成的轴
    drawAxis(img, cntr, p1, Scalar(0, 255, 0), 1); // 第一个主成分用绿色表示
    drawAxis(img, cntr, p2, Scalar(255, 255, 0), 5); // 第二个主成分用黄色表示


    // 计算并返回第一个主成分的方向角度(弧度值)
    double angle = atan2(eigen_vecs[0].y, eigen_vecs[0].x); // orientation in radians
    //! [visualization]


    return angle; // 返回物体的定向角度
}


/**
 * @function main
 * @brief 主函数
 */
int main(int argc, char** argv)
{
    //! [pre-process]
    // 加载图像
    CommandLineParser parser(argc, argv, "{@input | pca_test1.jpg | input image}");
    parser.about( "This program demonstrates how to use OpenCV PCA to extract the orientation of an object.\n" );
    parser.printMessage();


    // 从文件中读取图像
    Mat src = imread( samples::findFile( parser.get<String>("@input") ) );


    // 检查图像是否成功加载
    if(src.empty())
    {
        cout << "Problem loading image!!!" << endl;
        return EXIT_FAILURE;
    }


    // 显示原始图像
    imshow("src", src);


    // 将图像转换为灰度图
    Mat gray;
    cvtColor(src, gray, COLOR_BGR2GRAY);


    // 将图像转换为二值图
    Mat bw;
    threshold(gray, bw, 50, 255, THRESH_BINARY | THRESH_OTSU);
    //! [pre-process]


    //! [contours]
    // 在阈值处理后的图像中查找所有轮廓
    vector<vector<Point> > contours;
    findContours(bw, contours, RETR_LIST, CHAIN_APPROX_NONE);


    for (size_t i = 0; i < contours.size(); i++)
    {
        // 计算每个轮廓的面积
        double area = contourArea(contours[i]);
        // 忽略面积太小或太大的轮廓
        if (area < 1e2 || 1e5 < area) continue;


        // 仅用于可视化目的绘制每个轮廓
        drawContours(src, contours, static_cast<int>(i), Scalar(0, 0, 255), 2);
        // 获取每个形状的方向
        getOrientation(contours[i], src);
    }
    //! [contours]


    // 显示处理结果图像
    imshow("output", src);


    // 等待用户操作
    waitKey();
    // 正常退出程序
    return EXIT_SUCCESS;
}

该段代码主要演示了如何使用OpenCV里的PCA方法来提取物体的方向。它包括以下几个部分:

  1. 获取轮廓并绘制。

  2. 使用PCA计算轮廓的方向

  3. 在图像上以直观的方式绘制轴线和方向

主要的应用场景是,当你有一些形状,并且你想要定量地分析它们的方向时,可以使用这段代码来帮助你提取每个形状的主要方向。

threshold(gray, bw, 50, 255, THRESH_BINARY | THRESH_OTSU);

e23ade3347998dd29b7ac2fec93afb3a.png

findContours(bw, contours, RETR_LIST, CHAIN_APPROX_NONE);

295a1b26c4872ac92fdc34eca22c5a78.png

2. introduction_to_svm.cpp

57aa078e9b7992dbba8d30148d9850c8.png

0d991dc47fd45002ab70c0c86cfd388d.png

该代码的主要功能是使用支持向量机 (SVM) 对简单的2D数据进行分类,并把结果可视化展示出来。它首先设定了一个简单的二维训练数据集和对应的标签,然后创建了一个SVM分类器,并用线性核函数来训练这些数据。之后创建了一个512x512大小的图像,该图像的每个像素代表一个数据点,通过SVM模型对每个点进行分类,并据此为点涂色(绿色为正类,蓝色为负类)。代码还显示了训练数据点,并用不同的颜色标注支持向量。最终,结果图像会被保存并显示给用户。

# 包含OpenCV库相关头文件
#include <opencv2/core.hpp> // 包含OpenCV内核模块的定义
#include <opencv2/imgproc.hpp> // 包含图像处理功能
#include <opencv2/imgcodecs.hpp> // 包含图像编码解码相关功能
#include <opencv2/highgui.hpp> // 包含图形用户界面相关功能
#include <opencv2/ml.hpp> // 包含机器学习模块的功能


// 使用命名空间,简化代码
using namespace cv;
using namespace cv::ml;


int main(int, char**)
{
    // 设置训练数据
    // [setup1]
    int labels[4] = {1, -1, -1, -1}; // 定义标签数组,一类用1表示,另一类用-1表示
    float trainingData[4][2] = { {501, 10}, {255, 10}, {501, 255}, {10, 501} }; // 定义训练数据数组
    // [setup1]
    // [setup2]
    Mat trainingDataMat(4, 2, CV_32F, trainingData); // 将训练数据转换为OpenCV矩阵
    Mat labelsMat(4, 1, CV_32SC1, labels); // 将标签数据转换为OpenCV矩阵
    // [setup2]


    // 训练SVM分类器
    // [init]
    Ptr<SVM> svm = SVM::create(); // 创建一个SVM对象
    svm->setType(SVM::C_SVC); // 设置SVM类型为C-Support Vector Classification
    svm->setKernel(SVM::LINEAR); // 设置SVM核函数为线性核
    svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6)); // 设置终止条件
    // [init]
    // [train]
    svm->train(trainingDataMat, ROW_SAMPLE, labelsMat); // 用训练数据和标签训练SVM
    // [train]


    // 为了可视化,定义图像尺寸和图像矩阵
    int width = 512, height = 512;
    Mat image = Mat::zeros(height, width, CV_8UC3);


    // 展示SVM给出的决策区域
    // [show]
    Vec3b green(0,255,0), blue(255,0,0);
    for (int i = 0; i < image.rows; i++)
    {
        for (int j = 0; j < image.cols; j++)
        {
            Mat sampleMat = (Mat_<float>(1,2) << j,i); // 创建一个样本点
            float response = svm->predict(sampleMat); // 预测样本点的响应


            if (response == 1)
                image.at<Vec3b>(i,j)  = green; // 如果预测结果为1,将该点标记为绿色
            else if (response == -1)
                image.at<Vec3b>(i,j)  = blue; // 如果预测结果为-1,将该点标记为蓝色
        }
    }
    // [show]


    // 展示训练数据
    // [show_data]
    int thickness = -1; // 设置圆点的厚度为-1,即实心圆点
    // 在图像中绘制训练数据点
    circle( image, Point(501,  10), 5, Scalar(  0,   0,   0), thickness );
    circle( image, Point(255,  10), 5, Scalar(255, 255, 255), thickness );
    circle( image, Point(501, 255), 5, Scalar(255, 255, 255), thickness );
    circle( image, Point( 10, 501), 5, Scalar(255, 255, 255), thickness );
    // [show_data]


    // 展示支持向量
    // [show_vectors]
    thickness = 2; // 设置支持向量圆点的厚度为2
    Mat sv = svm->getUncompressedSupportVectors(); // 获取未压缩的支持向量


    // 在图像上绘制支持向量点
    for (int i = 0; i < sv.rows; i++)
    {
        const float* v = sv.ptr<float>(i); // 获取每个支持向量的指针
        circle(image,  Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thickness); // 绘制支持向量点
    }
    // [show_vectors]


    imwrite("result.png", image);        // 将图像保存为result.png文件


    imshow("SVM Simple Example", image); // 将图像显示给用户
    waitKey(); // 等待用户按键
    return 0;
}

7aa460acb9344afd65fa1c032c4aa568.png

97eab6acd3192ee8360eaec3d9778f92.png

3.  non_linear_svms.cpp

bfa0ddde9d845aa8f886ef89b5d37d63.png

d1beb52a10993a50b38a8da3e0531b1c.png

#include <iostream> // 引入IO流库
#include <opencv2/core.hpp> // 引入OpenCV核心功能库
#include <opencv2/imgproc.hpp> // 引入图像处理库
#include "opencv2/imgcodecs.hpp" // 引入图像编解码库
#include <opencv2/highgui.hpp> // 引入GUI库
#include <opencv2/ml.hpp> // 引入机器学习库


using namespace cv; // 使用cv命名空间
using namespace cv::ml; // 使用cv的机器学习命名空间
using namespace std; // 使用标准命名空间


// 声明一个帮助函数,用于显示程序信息
static void help()
{
    cout<< "\n--------------------------------------------------------------------------" << endl
        << "This program shows Support Vector Machines for Non-Linearly Separable Data. " << endl
        << "--------------------------------------------------------------------------"   << endl
        << endl;
}


// 主函数入口
int main()
{
    help(); // 调用帮助函数展示信息


    // 定义一些SVM训练时使用的常量
    const int NTRAINING_SAMPLES = 100;         // 每个类的训练样本数
    const float FRAC_LINEAR_SEP = 0.9f;        // 线性可分部分的样本比例


    // 用于可视化的数据
    const int WIDTH = 512, HEIGHT = 512; // 定义可视化图像的宽和高
    Mat I = Mat::zeros(HEIGHT, WIDTH, CV_8UC3); // 创建一个黑色的可视化图像


    //--------------------- 1. 随机设置训练数据 ---------------------------------------
    Mat trainData(2*NTRAINING_SAMPLES, 2, CV_32F); // 创建训练数据矩阵
    Mat labels   (2*NTRAINING_SAMPLES, 1, CV_32S); // 创建对应的标签矩阵


    RNG rng(100); // 随机数生成器


    // 设置线性可分部分的训练数据
    int nLinearSamples = (int) (FRAC_LINEAR_SEP * NTRAINING_SAMPLES);


    // 类别1的随机点生成
    Mat trainClass = trainData.rowRange(0, nLinearSamples);
    // x坐标的范围是[0, 0.4)
    Mat c = trainClass.colRange(0, 1);
    rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(0.4 * WIDTH));
    // y坐标的范围是[0, 1)
    c = trainClass.colRange(1,2);
    rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));


    // 类别2的随机点生成
    trainClass = trainData.rowRange(2*NTRAINING_SAMPLES-nLinearSamples, 2*NTRAINING_SAMPLES);
    // x坐标的范围是[0.6, 1]
    c = trainClass.colRange(0 , 1);
    rng.fill(c, RNG::UNIFORM, Scalar(0.6*WIDTH), Scalar(WIDTH));
    // y坐标的范围是[0, 1)
    c = trainClass.colRange(1,2);
    rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));


    //------------------ 生成非线性可分部分的训练数据 ---------------
    // 为类别1和2的生成随机点
    trainClass = trainData.rowRange(nLinearSamples, 2*NTRAINING_SAMPLES-nLinearSamples);
    // x坐标的范围是[0.4, 0.6)
    c = trainClass.colRange(0,1);
    rng.fill(c, RNG::UNIFORM, Scalar(0.4*WIDTH), Scalar(0.6*WIDTH));
    // y坐标的范围是[0, 1)
    c = trainClass.colRange(1,2);
    rng.fill(c, RNG::UNIFORM, Scalar(0), Scalar(HEIGHT));


    //------------------------ 生成类别的标签 ---------------------------------
    labels.rowRange(                0,   NTRAINING_SAMPLES).setTo(1);  // 类别1
    labels.rowRange(NTRAINING_SAMPLES, 2*NTRAINING_SAMPLES).setTo(2);  // 类别2


    //------------------------ 2. 设置支持向量机的参数 -------------------------
    cout << "Starting training process" << endl;
    Ptr<SVM> svm = SVM::create(); // 创建一个SVM对象
    svm->setType(SVM::C_SVC); // 设置SVM类型为C-SVC
    svm->setC(0.1); // 设置C参数
    svm->setKernel(SVM::LINEAR); // 设置核函数为线性核
    svm->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, (int)1e7, 1e-6)); // 设置终止条件


    //------------------------ 3. 训练svm --------------------------------------
    svm->train(trainData, ROW_SAMPLE, labels); // 使用训练数据和标签训练SVM
    cout << "Finished training process" << endl;


    //------------------------ 4. 显示决策区域-----------------------------------
    Vec3b green(0,100,0), blue(100,0,0);
    for (int i = 0; i < I.rows; i++)
    {
        for (int j = 0; j < I.cols; j++)
        {
            // 对于图像中的每个点,使用SVM进行预测
            Mat sampleMat = (Mat_<float>(1,2) << j, i);
            float response = svm->predict(sampleMat);


            // 根据预测结果把点对应的颜色涂上
            if      (response == 1) I.at<Vec3b>(i,j) = green;
            else if (response == 2) I.at<Vec3b>(i,j) = blue;
        }
    }


    //----------------------- 5. 显示训练数据 -----------------------------------
    int thick = -1;
    float px, py;
    // 类别1的数据
    for (int i = 0; i < NTRAINING_SAMPLES; i++)
    {
        px = trainData.at<float>(i,0);
        py = trainData.at<float>(i,1);
        // 在图像上画圆来代表数据点
        circle(I, Point( (int) px,  (int) py ), 3, Scalar(0, 255, 0), thick);
    }
    // 类别2的数据
    for (int i = NTRAINING_SAMPLES; i <2*NTRAINING_SAMPLES; i++)
    {
        px = trainData.at<float>(i,0);
        py = trainData.at<float>(i,1);
        circle(I, Point( (int) px, (int) py ), 3, Scalar(255, 0, 0), thick);
    }


    //------------------------- 6. 显示支持向量 ---------------------------------
    thick = 2;
    Mat sv = svm->getUncompressedSupportVectors(); // 获取支持向量


    for (int i = 0; i < sv.rows; i++)
    {
        const float* v = sv.ptr<float>(i);
        // 画出支持向量
        circle(I,  Point( (int) v[0], (int) v[1]), 6, Scalar(128, 128, 128), thick);
    }


    imwrite("result.png", I);                      // 保存生成的图像
    imshow("SVM for Non-Linear Training Data", I); // 展示图像
    waitKey(); // 等待键盘输入
    return 0;
}

本段代码演示了如何使用支持向量机(SVM)对非线性可分数据进行分类。具体包括以下步骤:

  1. 随机生成两个类的训练数据和对应的标签;

  2. 设置支持向量机的参数并进行训练;

  3. 显示SVM的决策区域;

  4. 在图像上用不同颜色显示两个类的数据点;

  5. 在图像上显示支持向量。

代码运行完成后将会产生一张图像,展示了决策区域和支持向量机如何区分两个类的数据点。

53754b59c43c29850485e4c44ba4099a.png

16f88db0ea512ca9a0f3eb42c6f88a83.png

95fbf2b70055fa384efe64ae0951e391.png

90796e788ecbee799d67c7ca58e05197.png

c35fc34a86a0716435cde128fab3b626.png

circle(I, Point((int)px, (int)py), 3, Scalar(255, 0, 0), thick);

fedcf01d0f9f2915b0aff89e316b2a7f.png

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: OpenCV是一个开放源代码的图像处理库,也支持机器学习和模式识别等领域的算法。其中包括支持向量机(Support Vector Machine, SVM)算法,可以用于非线性回归任务。 支持向量机是一种常见的机器学习算法,可以用于分类和回归问题。在回归任务中,支持向量机可以用于建立非线性回归模型。 OpenCV中的支持向量机非线性回归要基于核函数方法。核函数可以将非线性问题转化为高维空间中的线性问题,这样就可以使用线性回归模型进行建模。OpenCV提供了多种核函数供选择,如线性核函数、多项式核函数和径向基函数(Radial Basis Function, RBF)核函数等。 使用OpenCV进行支持向量机非线性回归的步骤大致如下: 1. 收集回归数据集,并根据需求进行预处理,如数据归一化。 2. 创建一个支持向量机模型对象,通过设置相关参数,如核函数类型、惩罚因子等,来进行模型配置。 3. 使用训练数据集训练支持向量机模型。 4. 使用训练好的模型进行预测,得到回归结果。 5. 根据需要,可以对模型进行进一步优化、调参等。 通过OpenCV支持向量机非线性回归功能,我们可以在处理非线性回归问题时,利用支持向量机算法建立准确性较高的模型。这样可以对各种复杂的非线性数据进行准确的回归预测,并能适应不同的核函数和其它参数配置的需求。 ### 回答2: OpenCV库是一种广泛使用的开源计算机视觉和机器学习库,其中包括了支持向量机(SVM)算法,可以用于非线性回归。 支持向量机是一种监督学习模型,用于分类和回归问题。在线性回归问题中,我们试图找到最佳的直线或平面来拟合数据。然而,在某些情况下,数据可能无法线性分割,这就需要使用非线性回归算法,如支持向量机OpenCV中的支持向量机实现的一个关键概念是核函数。核函数可以将数据从输入空间(原始特征空间)映射到一个更高维的特征空间,这样可以使数据在更高维度的空间中变得线性可分。OpenCV提供了多个核函数选项,如径向基函数(RBF)核、多项式核等,这些核函数可以根据问题的要求进行选择。 在使用OpenCV进行非线性回归时,我们首先需要准备训练数据和测试数据。然后,我们可以选择适当的核函数,并通过调整一些参数(如核函数的参数、惩罚因子等)来训练支持向量机模型。训练完成后,我们可以使用模型来预测新的数据样本。 总之,OpenCV库提供了支持向量机算法的实现,以解决非线性回归问题。通过选择适当的核函数和调整参数,可以构建一个准确的非线性回归模型,从而在计算机视觉和机器学习任务中提供更好的性能和结果。 ### 回答3: OpenCV是一个广泛应用于计算机视觉和图像处理领域的开源库。它不仅支持常见的图像处理功能,还包括机器学习算法。其中,OpenCV也提供了对支持向量机(Support Vector Machine,SVM)的支持,包括非线性回归。 支持向量机是一种常用的机器学习算法,旨在通过寻找最优的超平面,将数据点划分成不同的类别。在线性回归中,SVM可以用于从给定的数据集中预测一个连续性的输出变量。然而,有时候数据集并不是线性可分的,这时就需要通过非线性回归来解决这个问题。 在OpenCV中,支持向量机非线性回归通过使用内核函数来实现。内核函数的作用是将训练数据从原始特征空间映射到更高维的特征空间,使得数据在新的空间中能够线性可分。常见的内核函数包括多项式函数、径向基函数和Sigmoid函数等。 使用OpenCV进行支持向量机非线性回归的步骤要有以下几个: 1. 准备训练数据集,包括输入变量X和输出变量y。 2. 创建一个SVM对象,并设置相关参数,如内核函数和惩罚参数等。 3. 调用SVM对象的训练方法,输入训练数据集,训练出一个SVM模型。 4. 对新的输入数据进行预测,可以使用SVM对象的predict方法,得到相应的输出结果。 总之,OpenCV支持向量机非线性回归提供了一种有效的工具来处理非线性可分的数据集。通过选择合适的内核函数和参数设置,可以在计算机视觉和图像处理等领域中应用SVM算法,实现准确的预测和分类任务。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值