深度解析|AI绘画中SD1.5、SDXL、Checkpoint、Lora 的含义与原理

大家好,我是程序员晓晓

自接触AI绘画以来,我发现很多朋友对一些基础词汇理解地很模糊,然后在搭建ComfyUI 工作流或者使用SD WebUI进行出图时,只能知其然,不知其所以然的感觉,也不知搭选哪个模型,很多时候都是照猫画虎地模仿,很难受。而且,很多时候,网上找不到详细地教程来详细解释这些含义。

今天我将对一些基础词汇做一个复盘,在这里做了个分享。

今天给大家分享的是 stable diffusion中的一些基础问题,主要分三块:

  1. SDXL、SD1.5是什么意思

  2. checkpoint、lora是什么意思

  3. checkpoint和lora的区别

放轻松,我会通过设计师的视角帮大家更好地理解。

问题1:SDXL、SD1.5这些版本有什么区别,到底有多少版本?

为什么会出现这个问题,是因为每次在浏览网站或者别人的视频时,左上角的xl,lora等搞得我莫名其妙,云里雾里。一会儿1.0,一会儿1.5,一会儿XL,不明所以。

其实这么回事:SD是stable diffusion的缩写,后面的后缀其实是各个版本的称号;

Stable Diffusion (SD) 自发布以来经历了多个版本的迭代。以下是SD主要版本的概览:

  1. Stable Diffusion v1.0 (2022年8月)首次公开发布

  2. Stable Diffusion v1.1 - v1.4 (2022年8月-10月)陆续发布的小版本更新,主要改进模型性能和质量

  3. Stable Diffusion v1.5 (2022年10月)在1.4基础上的进一步改进

  4. Stable Diffusion v2.0 (2022年11月)重大更新,改进了文本理解和图像质量

  5. Stable Diffusion v2.1 (2022年12月)对2.0的改进,增强了生成能力

  6. Stable Diffusion XL 0.9 (2023年6月)SDXL的预览版本

  7. Stable Diffusion XL 1.0 (2023年7月)目前最新的主要版本,大幅提升了模型能力

每个版本都比之前的版本生图质量更好,学习的图片数量也更多。接下来就给大家简单做个区分:

SD v1.1-1.5:训练的图片基本上都是 512*512 大小;

SD v2.0-2.1: 训练的图片大小是768*768;

SD XL:分别以600000步256*256 和200000步 512*512 大小的图片进行训练,适合生成1024*1024大小的图片,生成质量大大提高,非常受欢迎。

简单理解就是SD的每一个版本都比之前的版本 训练的步数更多,出图的质量更好。

那这么多版本,我应该下载哪个版本最合适呢?这里我推荐大家下载sd1.5和sdXL这两个版本,因为1.5版本生态最繁荣,sdXL 出图质量最好,画面表现高,但是占用显存略高,训练速度慢。

如果大家现在手里还没有这两个模型,可以看下方扫描免费获取模型文件

问题2:checkpoint、lora是什么意思?

梳理了stable diffusion各版本之后,接下来帮大家理解checkpoint和lora的含义和不同;

2.1什么是checkpoint?

Checkpoint是深度学习中常用的一个术语,用于描述在每次训练后保存模型参数(权重)的惯例。类似于游戏中保存关卡的功能,Checkpoint允许我们在训练过程中保存模型的状态,以便之后可以加载这些保存的参数并继续训练或进行推理。

简单理解的话,checkpoint就是在stable diffusion底模的基础上,再次训练得到特定风格的,更适合生成某种调性图片的模型。

所以我们可以在网上看到很多的checkpoint,这些都是在底模的基础上再次训练得到的。

每种checkpoint都可以在详情页中看到基础模型的版本,看下图:

这个大家要注意了。ControlNet 跟模型的版本是一一对应的,如果checkpoint的版本和ControlNet 模型版本不一致,就会报错,因为训练的图片尺寸不一样。

报错信息如下:

2.2:什么是lora?

lora(Localized Refinement of Attributes)不同于checkpoint,lora可以看成是在基础模型生成的图片上,加了一层“滤镜”,达到切换风格的效果。因此他的体积很小,只有几百MB,受到很多小伙伴的青睐,毕竟一般人没有那么大的算力和时间去训练一个checkpoint,但是训练一个lora只要几个小时,而且要的训练素材也很少,优势很大,非常吸引人。

我们可以把lora理解成英雄联盟中的皮肤,原始的皮肤是大模型,后续的皮肤就是lora,lora可以改变英雄的服装,姿态,但是主要框架是不变的。所以说lora技术是一种轻量化的模型微调训练方法。

我们可以在很多网站上下载不同风格的lora,有时候大家会遇到一个问题,就是lora出来的图片效果没有网站发布的案例好看,可能是因为没有选对底模的原因。

或者是没有输入触发词:

问题3:checkpoint和lora 的区别在哪里:

如果大家仔细看过上面的内容,不难理解两者的区别:

最后怎么在AI绘画工具ComfyUI中选lora,需要在“新建节点”下找到“加载器”,再找到“lora加载器”:

然后再lora节点中选择自己已经下载好的lora就可以啦

lora文件的存储位置在:models下的loras中

今天的分享到这里就结束了,通过这篇文章,希望大家能更好的理解sd各版本的差异和lora的使用,了解了这些基础知识之后,可以帮助大家更快地上手ComfyUI

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除
<think>好的,我现在需要回答用户关于如何选择合适的Stable Diffusion模型的问题。首先,我需要回顾用户提供的引用内容,确保回答中包含相关引用。根据用户给出的引用[1][2],其中提到Stable Diffusion的生成策略以及Checkpoint Model的作用。 接下来,我应该考虑用户可能的需求。用户可能对不同类型的模型不太了解,比如主模型LoRA、Textual Inversion等,需要解释这些模型的特点适用场景。同时,用户可能关心如何根据不同的生成目标(如写实风格、动漫风格、艺术创作)选择模型,所以需要分点说明。 然后,我需要确保回答符合系统级指令,比如正确使用LaTeX格式,但在这个问题中可能涉及较少数学公式,所以重点放在结构清晰引用正确上。另外,需要生成相关问题,这部分要涵盖模型比较、模型来源、性能优化等。 还要注意用户可能对模型来源安全性有疑问,因此需要提到可信平台如Civitai,并建议检查用户评价更新日志。最后,需要提醒用户实验参数调整的重要性,确保他们知道选择模型后还需要优化生成过程。 现在,组织这些思路,分步骤详细说明,确保每个部分自然引用相关内容,并生成相关问题。</think>### 如何选择适合的 Stable Diffusion 模型进行图像生成? 选择适合的 Stable Diffusion 模型需综合考虑生成目标、模型特性及硬件条件,以下是具体步骤: --- #### **1. 明确图像生成需求** - **写实风格**:选择专注于高精度人像或场景的模型,例如`Realistic Vision`或`Protogen`。这类模型擅长细节还原光影处理[^2]。 - **动漫/二次元风格**:使用`Waifu Diffusion`或`Anything V5`,这类模型在色彩饱线条表现上更贴合动漫特征。 - **艺术创作**:尝试融合多种风格的模型,如`DreamShaper`或`Stable Diffusion 2.1`,支持抽象构图纹理增强。 --- #### **2. 了解模型类型** - **主模型Checkpoint Model)**:核心生成模型,文件较大(通常2-7GB),决定基础风格。例如,Civitai平台提供多种风格的Checkpoint Model。 - **微调模型LoRA/Textual Inversion)**:小型适配模型(几MB到几百MB),用于调整细节(如特定人物、画风)。适合在主模型基础上叠加使用。 --- #### **3. 评估硬件性能** - **显存限制**:基础模型(如SD 1.5)可在4GB显存下运行,而SDXL等大型模型需要至少8GB显存。 - **生成速度**:复杂模型(如SDXL)单图生成可能需要20秒以上,而轻量模型(如SD 1.5)仅需5-10秒。 --- #### **4. 参考社区评价示例** - 在Civitai、Hugging Face等平台查看模型**评分**、**用户生成示例**及**使用反馈**[^2]。 - 注意模型更新日志,优先选择持续维护的版本。 --- #### **5. 实验参数调整** - 下载多个候选模型进行**生成对比**,观察同一提示词下的输出差异。 - 调整`采样步数`(20-50步)、`CFG Scale`(7-15)等参数优化效果。 --- ### 示例模型推荐 | 模型名称 | 适用场景 | 显存需求 | 平台来源 | |-------------------|----------------|----------|----------------| | Realistic Vision | 写实人像/场景 | 6GB+ | Civitai | | Waifu Diffusion | 动漫风格 | 4GB | Hugging Face | | SDXL 1.0 | 高分辨率艺术 | 8GB+ | Stability AI | --- ### 常见问题解答 - **Q:模型文件如何加载?** A:将Checkpoint文件放入Stable Diffusion的`models/Stable-diffusion`目录,重启软件即可选择。 - **Q:模型兼容性如何?** A:部分模型需特定插件(如ControlNet)或对应版本的Stable Diffusion(如SD 1.5SDXL不兼容)。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值