DeepSeek-R1原理解析及项目实践(含小白向概念解读)

一、概念解读(小白向)

我们打开deepseek官网,会发现对话框之下:有两个按钮,那他们的含义如何理解🤔?最近爆火的deepseek究竟指的是哪个模型?深度思考R1与联网搜索的作用?

接下来对常用概念做一些入门性质的介绍:

1、联网搜索:

比较好理解,我们知道LLM(大语言模型)的知识是有时效性的,因为大模型知识来源于海量的离线数据训练,而一般来说,其训练数据大约滞后于其发布时间半年到一年以上。比如在 OpenAI 的模型介绍网页上,可以看到 o1 模型的训练数据截止时间为2023年十月份,而deepseek(此处指V3基座),参考其回复发现时间大约也是2023年10月。【所以对于时效性问题,LLM回答不出来实属正常。】而联网搜索,解决的就是时效性问题,当你勾选联网搜索时,你可以把其视为一个能理解你的任意自然语言问题(传统搜索引擎仅仅为关键词搜索)的AI搜索引擎。

2、深度思考(R1)

在介绍深度思考之前,我们先来了解如下常见名词的含义:

deepseek:泛指性的概念,指任意deepseek系列模型。

deepseek V3:对话模型,最新版deepseek基座模型(无深度思考能力),其指令版本具备对话能力,与gpt-4o,qwen2.5系列等模型属于同阶段模型。参数量671B,当前最强开源基座模型,但参数量巨大,完整部署大约需1300G+显存。

deepseek R1:推理模型,【也就是最近爆火的模型,由于其在相对低资源的条件下,SFT+多阶段强化学习训练出能力超强推理能力而闻名】。擅长复杂问题的推理,准确率相较于deepseek V3更高,但思考过程过长。

deepseek R1-zero:推理模型,可以理解deepseek R1的先验版本,R1-zero的训练是一个探索性的过程,它验证了RL本身对于激励base模型产生推理的能力。在这个探索结论上,才开始正式进入R1的训练。【此模型为实验性质,其能力低于deepseek R1,因而也未面向C端用户上线】

DeepSeek-R1-Distill-Qwen-xxxB:知识蒸馏版的推理模型,使用deepseek R1中间阶段的80w条训练数据,对Qwen2.5系列进行SFT指令微调的模型。(无强化学习过程,可以理解为COT思维链数据的SFT)大家平时听到的残血版,蒸馏版,大多指此版本。

我给大家准备了一份全套的《AI大模型零基础入门+进阶学习资源包》,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

二、训练原理解析

1、训练流程

Deepseek R1的训练过程可分为两阶段迭代优化,核心是通过高质量推理数据生成RL策略提升逻辑推理能力,具体流程如下:

阶段一(Phase 1):COT数据质量提升

1.基座模型

◦使用Deepseek V3 Base(预训练模型)作为初始基座。

2.训练步骤

SFT训练:用初始逻辑推理数据(如COT轨迹)进行监督微调。

RL强化训练:进一步优化得到Model RL-1,提升推理轨迹的生成质量。

3.核心目的

◦利用Model RL-1生成更高质量的新COT数据,随后弃用Model RL-1,仅保留新数据。

阶段二(Phase 2):干净基座再训练

1.基座模型回退

关键策略:重新使用原始Deepseek V3 Base(非Phase 1的Model RL-1,是为了避免使用低质量数据污染的基座)。

2.数据混合

新COT数据:Phase 1生成的高质量逻辑推理数据使用拒绝采样的方式来筛选轨迹数据。

Post-training数据:加入deepseekV3非逻辑推理类数据(如通用任务),防止模型遗忘其他能力

3.训练流程

◦再次回到base模型上,首先用这80w的新数据对它做2个epoch的sft。

◦接着执行2个阶段的RL:

▪第1阶段RL:旨在增强模型推理方面的能力。采取类似r1 zero的RL方法,使用基于规则的RM,对模型进行RL训练,以提升模型在数学、代码和逻辑方面的推理能力。(这里用的数据集应该不是那80w,是类似于zero直接构建prompt)

▪第2阶段RL:旨在针对模型的helpfulness和 harmlessness,类似于dpsk v3的训练pipeline


核心训练技巧

1.迭代数据增强

◦通过前阶段模型生成更优质数据,用于后阶段训练(类似微软rStar-Math的MSCT方法)。

2.基座模型重置

◦每轮迭代均从原始干净基座出发,避免误差累积,最大化高质量数据效用。

3.防遗忘机制

◦混合逻辑与非逻辑数据,保持模型多任务平衡性。

参考图片来源:复刻OpenAI O3之路:Deepseek R1、Kimi K1.5及MCTS技术路线探析-知乎

2、DeepSeek R1 的技术价值思考:

1、r1 zero证明了无需sft,直接用base model做单纯的RL,已经可以取得强大的reasoning能力。这里单纯的RL是指:没有显式提供一些真正的long cot数据让模型去背去学,我只是在sys_msg里告诉模型先思考,再回答。接着通过RL一轮又一轮的训练,模型产出的responses越来越长,且在某个时刻出现了自我评估和反思的行为。

2、随着训练steps的增加,r1 zero倾向于产出更长的response(long cot),并且还出现了反思行为。这些都是在没有外部干预的情况下,r1 zero模型在训练中自我进化的结果。

3、对于小模型,不需要依然RL,只用蒸馏就可以使得其推理能力得到显著提升(对于大模型会是怎么样的,技术报告中没有提)

三、deepseek复现-实践项目

1、高考数学测试

测试数据:《2024年高考新课标一卷数学真题》,一共19道题,满分150分。

测试方式如下

1.Claude sonnet 3.5 (直接把题目输入给模型)

2.Claude sonnet 3.5 + COT

3.Claude sonnet 3.5 + MCTS+ COT(Agent模式)

4.O1-preview (直接把题目输入给模型)

5.Qwen2.5-Math-72B (直接把题目输入给模型)

6.Deepseek-R1 (直接把题目输入给模型)

7.Deepseek-R1-Distill-Qwen-32B (直接把题目输入给模型)

2、deepscaler

UC伯克利的研究团队基于Deepseek-R1-Distilled-Qwen-1.5B,通过简单的强化学习(RL)微调,得到了全新的DeepScaleR-1.5B-Preview。在AIME2024基准中,模型的Pass@1准确率达高达43.1% ——不仅比基础模型提高了14.3%,而且在只有1.5B参数的情况下超越了OpenAI o1-preview!

Deepseek-R1发现,直接在小型模型上用强化学习,效果不如知识蒸馏。在Qwen-32B模型上做对比实验,强化学习只能让AIME测试的准确率达到47%,但只用知识蒸馏就能达到72.6%。不过,要是从更大的模型中,通过蒸馏得到高质量的SFT数据,再用强化学习,小模型的推理能力也能大幅提升。研究证明了这一点:通过强化学习,小型模型在AIME测试中的准确率从28.9%提高到了43.1%。

https://github.com/agentica-project/deepscaler

3、Logic-RL

中科大某大四科研小组复现,在Logic Puzzle Dataset数据集下。

证明了:原始基座模型在测试集上只会基础的step by step逻辑。但在无 Long CoT冷启动蒸馏,三阶段Rule Based RL后,模型学会了:

- 迟疑 (标记当前不确定的step等后续验证),

- 多路径探索 (Les’t test both possibilities),

- 回溯之前的分析 (Analyze … statement again),

- 阶段性总结 (Let’s summarize, Now we have determined),

- Answer前习惯于最后一次验证答案(Let’s verify all statements)

https://github.com/Unakar/Logic-RL

4、Open R1

国外huggingface团队复现,旨在做到完全开放复现 DeepSeek-R1,补齐 DeepSeek 所有未公开的技术细节。

https://github.com/huggingface/open-r1

四、本地实践

1、本地化部署与产品使用

我们在RAG知识增强的问答助手5starAI项目上实践。使用VLLM部署了DeepSeek-R1-Distill-Qwen-32B-4bit版本,显存占用如下。速度实测约50Tokens/S。

RAG场景,在Llamaindex框架下集成,部分代码如下:

以下是应用效果截图,含思考过程:

2、强化学习训练实践

由于本地有text2SQL前置实践经验【http://xingyun.jd.com/shendeng/article/detail/31804?forumId=38&jdme_router=jdme://web/202206081297?url%3Dhttp%3A%2F%2Fsd.jd.com%2Farticle%2F31804】,并积累了相关数据集,我们计划在text2SQL任务上,使用DeepSeek-R1-Distill-Qwen-1.5B为基座(资源限制),参考https://github.com/agentica-project/deepscaler的项目经验,进行RL训练。目前正在尝试复现该项目效果中,后续将更新。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料。包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

😝有需要的小伙伴,可以VX扫描下方二维码免费领取🆓

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程扫描领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
在这里插入图片描述

在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程扫描领取哈)
在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程扫描领取哈)
在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程扫描领取哈)
在这里插入图片描述
在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程扫描领取哈)
在这里插入图片描述

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

### DeepSeek-R1 工作原理概述 DeepSeek-R1 是一种旨在通过强化学习激励大语言模型(LLM)推理能力的技术框架。该方法的核心在于设计了一种新颖的学习机制,使得模型能够在特定任务上表现出更强大的逻辑推理能力和更高的准确性。 #### 模型架构训练过程 为了实现这一目标,DeepSeek-R1 结合了预训练的语言模型和基于奖励信号的微调策略。具体来说,在初始阶段,使用大规模语料库对基础模型进行了充分预训练;随后引入精心设计的任务导向型数据集以及相应的评价指标体系来指导后续的优化方向[^1]。 在此基础上,采用自定义损失函数并融入外部知识源作为辅助信息输入给定场景下的决策制定流程之中。这不仅有助于提升模型对于复杂问题的理解水平,同时也促进了其跨领域迁移应用的能力发展。 此外,DeepSeek-R1 还特别强调了环境反馈的重要性——即如何有效地利用来自真实世界的即时响应去调整内部参数配置从而获得更好的性能表现。为此,研究团队开发了一系列模拟器用于生成多样化的交互情境供算法探索实践,并据此构建了一个闭环控制系统以确保整个迭代更新过程中始终遵循既定的目标设定路径前行。 ```python import torch.nn as nn class CustomLossFunction(nn.Module): def __init__(self, alpha=0.5): super(CustomLossFunction, self).__init__() self.alpha = alpha def forward(self, output, target): loss = (output - target)**2 * self.alpha # Simplified example of custom loss function return loss.mean() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值