keras模拟线性回归

from tensorflow.keras.layers import Dense
from tensorflow.keras.models import Sequential
import numpy as np

X = np.linspace(-1, 1, 100)
noise = np.random.normal(0, 0.01, X.shape)
Y = X * 2 + 3 + noise

model = Sequential()
model.add(Dense(1, input_dim=1))

model.compile(optimizer="sgd", loss="mse")

for i in range(50):
    model.fit(X, Y, batch_size=20)
    W, b = model.layers[0].get_weights()
    print("W=", W, "b=", b)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值