DBSCAN聚类
首先需要说明的是,密度的定义为在给定半径范围内样本点的数量。
算法步骤
标记
- 对于每一个样本点,在其周边的给定半径的范围内,其余样本点的数量不小于指定的数量的话,这个样本点就是核心点(core point)
- 如果小于指定的最小值,但是其半径范围内有核心点的话,这个点就是边界点(border point)
- 剩下的点称为噪声点(noise point)
划分
- 每个核心点或者距离相近的几个核心点可以被划分为一个单独的簇
- 每个边界点划分到其对应的核心点所在的簇中
优缺点
优点:
- 和K-Means比较,对聚类数据集的类型没有要求,我们知道K-means要求数据集最好是球状的,而密度聚类则没有这个困扰,它可以对任意形状的数据集进行聚类。
- 异常点的识别,根据之前对于不同点的划分,密度聚类是可以划分出异常点的,而K-means则不行。
缺点:
- 维度灾难:随着数据集中特征数量的增加,维度灾难的负面影响也会随之递增。
- 选择最小值点和半径,和K-means中选择K值类型,选择不同的这两个数据也会对聚类效果产生不同的影响。