DBSCAN聚类

DBSCAN聚类

首先需要说明的是,密度的定义为在给定半径范围内样本点的数量。

算法步骤

标记

  • 对于每一个样本点,在其周边的给定半径的范围内,其余样本点的数量不小于指定的数量的话,这个样本点就是核心点(core point)
  • 如果小于指定的最小值,但是其半径范围内有核心点的话,这个点就是边界点(border point)
  • 剩下的点称为噪声点(noise point)

划分

  • 每个核心点或者距离相近的几个核心点可以被划分为一个单独的簇
  • 每个边界点划分到其对应的核心点所在的簇中

优缺点

优点:

  1. 和K-Means比较,对聚类数据集的类型没有要求,我们知道K-means要求数据集最好是球状的,而密度聚类则没有这个困扰,它可以对任意形状的数据集进行聚类。
  2. 异常点的识别,根据之前对于不同点的划分,密度聚类是可以划分出异常点的,而K-means则不行。

缺点:

  1. 维度灾难:随着数据集中特征数量的增加,维度灾难的负面影响也会随之递增。
  2. 选择最小值点和半径,和K-means中选择K值类型,选择不同的这两个数据也会对聚类效果产生不同的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值