简单的记录一些知识点,权当作备忘,过后有空统一整理一下。
Chapter1.
- generalization:训练好的模型将测试集中数据正确分类的能力。
- 无监督学习的任务一般可以为聚类,密度估计,降维。
- 监督学习算法中分类与回归的区别:分类的输出目标类别是有限离散的,而回归的目标输出是一系列连续的变量。
1、多项式曲线拟合
多项式曲线拟合中,目标函数为
其中,M为多项式的阶。尽管目标函数关于x为非线性函数,但关于回归系数w是线性函数。对于未知参数而言,那些目标函数为线性函数的F,被称为线性模型。
系数w由目标函数对训练集的拟合决定,可以通过最小化误差函数(error function)获得:
误差函数是关于回归系数w的二次函数,所以对应回归系数向量中的元素wj的导函数E`(w)是线性的,故而误差函数有唯一的最小值,对应的系数为w*。此时目标函数为y(x,w*).
这里,选择合适的M(多项式的阶数)十分重要,否则会出现欠拟合或者过度拟合的问题。
训练得到最优的目标函数y(x,w*)后,可以使用方根均值RMS来估算目标函数与训练集以及测试集的误差。
误差函数E除以样本大小N,使得我们可以在不同数据集上做出平等的估算。
正则化
为了防止过度拟合现象的发生,在误差函数后面增加惩罚项来防止回归参数的值过大。
参数λ控制了惩罚因子的权重。
2、概率论
和公式与乘法公式是PRML的基本公式,对于离散型变量而言
可以推导出
对于连续型变量