【论文阅读】 Dimensionality reduction for large-scale neural recordings

Abstract

大多数感觉、认知和运动功能取决于许多神经元之间的相互作用。近年来,连续或同时记录大量神经元的技术得到了快速发展和越来越多的使用。一个关键问题是,除了单独研究每个神经元外,通过研究记录的神经元群体可以获得什么样的科学见解。在这里,我们研究了群体研究的三个重要动机:需要统计能力的单次试验假设群体反应结构假设大数据集的探索性分析。许多最近的研究都采用了降维的方法来分析这些种群,并发现在单个神经元的水平上并不明显的特征。我们描述了通常应用于群体活动的降维方法,并提供了关于选择方法和解释其输出的实用建议。这篇综述旨在为实验和计算研究人员设计,他们寻求理解降维在系统神经科学中已经有和可以有的角色,并寻求将这些方法应用于他们自己的数据。


神经科学的一个核心原则是,我们大脑非凡的计算能力是由相互连接的神经元种群产生的。事实上,我们发现自己正处于神经科学历史上一个令人兴奋的时刻,因为该领域正在经历着所记录的神经活动的数量和复杂性的快速增长。许多研究小组已经开始采用多电极和光学记录技术,可以同时监测皮层中许多神经元的活动,在某些情况下,还可以监测深层结构中的神经元活动。记录技术的持续发展有望将同时记录的神经元的数量增加一个数量级。与此同时,计算能力和算法发展的大规模增加使得能够对神经群体活动进行高级多元分析,其中神经元可以顺序或同时记录下来。

这些技术进步使研究人员能够重新考虑正在提出的科学问题的类型,以及如何分析神经活动,即使是经典的行为任务和已经研究了几十年的大脑区域。事实上,许多关于神经系统的研究正在经历一个从单个神经元到种群水平的假设和分析的范式转变。我们首先讨论了联合考虑神经群体的三个科学动机,而不是基于单个神经元:需要统计能力的单次试验假设、群体反应结构假设和大数据集的探索性分析。重要的是,我们表明,在某些情况下,数据从根本上不能在单个神经元的基础上被理解,无论是由于神经峰值的变化,还是关于依赖于多个神经元的反应如何共变的神经机制的假设。

这篇综述的目的是重点关注一类统计方法,即降维,它非常适合于分析神经种群活动。降维方法产生高维数据的低维表示,其中选择该表示是为了保留或突出数据中的一些感兴趣的特征。这些方法已经开始揭示各种现象背后的神经机制的诱人证据,包括前额叶皮层决策过程中感觉输入的选择和整合,前运动皮层在不执行动作的情况下准备动作的能力,以及嗅觉系统中的气味辨别。降维也已成功地应用于决策、运动系统和嗅觉系统的其他研究中的群体记录,以及工作记忆、视觉注意、听觉系统、规则学习、演讲等。我们介绍了降维,并结合了以前使用这些方法来解决群体分析的三个科学动机中的每一个的研究。由于降维的使用在系统神经科学中仍然相对较新,我们之后提出了方法细节和实际考虑。

神经科学领域的大部分工作都是在过去的十年中发展起来的:正如Brown等人预先指出的那样,“未来的挑战是设计出真正允许神经科学家对多个峰值序列数据进行多变量分析的方法”。降维是许多研究人员已经回答并将继续回答这一挑战的一个重要方式。

Scientific motivation of population analyses

在这里插入图片描述
图1:群体分析和降维的动机。(a) 由于神经记录技术的规模和分辨率的增长,一个典型的实验产生了许多试验(从左到右的面板组)、许多实验条件(不同颜色的面板显示在深度上)和许多神经元(每个面板的行,显示为峰值光栅)。定性和定量地审查这些数据对基本理解和检验假设都提出了许多挑战。(b) 神经反应通常在试验中求平均值(在给定条件下),并平滑为刺激时间直方图。即使这些试验平均视图随着条件和记录神经元数量的增加很难解释。值得注意的是,这一挑战甚至可以出现在结构简单的数据中:每个模拟神经元都有泊松峰值,其潜在的放电率是三个高斯脉冲的窗口线性混合。每个神经元都有不同的混合系数、基线和振幅。降维是一类可以从这些看似复杂的数据中提取简单结构的统计方法。

记录技术的规模和分辨率的增长给神经活动的分析带来了挑战。考虑多个模拟神经元在多个实验条件下的多个实验试验中“记录”的动作电位的教学示例(图1a)。随着神经元、试验和条件的数量的增加,从这些峰值序列中提取有意义的结构变得越来越具有挑战性。事实上,在假定相似的试验中平均尖峰峰值并在时间上平滑的经典方法(图1b)仍然可能产生难以解释的反应。尽管存在这种明显的复杂性,但同时研究神经元群体也有很大的科学机会;这里我们讨论这些科学动机。

单次试验统计能力(single-trial statistical power)

如果神经活动不是外部可测量或可控变量的直接函数(例如,如果活动更多地反映了内部处理,而不是刺激驱动或可测量行为),则在名义上相同的试验中,神经反应的时间过程可能会大不相同。有人怀疑这一点在涉及注意力、决策等认知要求较高的任务中尤其如此。在这种情况下,平均不同试验的反应可能会掩盖感兴趣的神经时间过程,因此,单次试验分析是必不可少的。通过记录单个神经元的反应,通常很难识别这些类型的内部认知过程的瞬间波动。然而,如果同时记录多个神经元,就可以利用神经元之间的统计能力来提取单个实验试验中种群活动的简洁总结。

例如,考虑一项决策任务,在该任务中,受试者可能会突然改变主意或在个体试验的可能选择之间摇摆不定。如果这些切换发生在不同试验的不同时间,则试验平均法将模糊每个试验的切换时间。在最坏的情况下,实验平均可能误导科学解释:在这个例子中,突然但随时间变化的切换在平均时表现为缓慢的过渡,暗示了不同的神经机制。群体记录批判性地解决了试验平均的这一缺点:人们可以在一次试验中考虑多个神经元,而不是在多次试验中考虑单个神经元,以获得提取去噪的单次试验神经时间过程所需的统计能力。然后,这些时间过程可以在逐个试验的基础上与受试者的行为相关联,从而可能导致对决策的神经基础的新见解。下面,我们将展示降维方法是该统计分析的自然选择,如上述研究中所使用的那样。

群体反应结构(population response structure)

在可能存在涉及神经元间反应协调的神经机制的情况下,群体分析是必要的。这些机制只存在于群体水平上,而不存在于单个神经元水平上,因此单个神经元的反应可能看起来令人绝望地困惑,或者更糟糕的是,可能误导对真正生物学机制的探索。事实上,在更高水平的大脑区域以及更接近感觉输入和运动输出的区域的记录,在跨神经元和实验条件下都产生了高度异质和复杂的单神经元反应。在某些情况下,单神经元的反应可能和可外部测量的感觉输入或运动输出并没有明显的逐时关系。传统上,这种异质性被认为是生物噪音或其他混淆因素的结果,研究人员通常只研究那些根据外部可测量的数量“有意义”的神经元。然而,这种单神经元的复杂性可能是一种只存在于群体水平上的连贯和可测试的神经机制的实现。

为了使这个概念具体化,将一个假设的神经回路视为一个动态系统,因为它的组成神经元的活动随着时间而变化。就像弹跳球的运动受牛顿定律控制一样,这个神经回路的活动是受动态规则(例如,点吸引子、线吸引子或振荡)控制的。虽然单神经元的反应肯定表达了这些动态规则的各个方面,但关键的概念点是,如果没有神经元的群体,既无法单独理解单神经元的反应,也无法理解真正的机制。通过一起分析记录的神经元,我们可以测试神经机制的存在,是一个动态过程还是其他类型的种群活动结构。降维法是形成和评价群体活动结构假说的关键统计工具。

探索性数据分析(exploratory data analysis)

一起研究一群神经元有助于数据驱动的假设生成。在这一点和之前的动机之间有一个微妙但重要的区别。群体反应结构涉及群体水平上存在的机制,不能解释为单神经元假设或机制。另一方面,探索性的数据分析涉及到可视化大量的数据,这可以帮助生成关于单个神经元或群体的假设。当神经元表现出异质反应特性时,同时且一致地解释所有反应是一个挑战(图1)。将群体作为一个整体来考虑提供了一种方法,使所有的数据(跨神经元、条件、试验和时间)可以一起解释。这一步提供了对数据的显著特征的初步评估,并可以指导后续的分析。此外,可视化是对大型数据集进行完整性检查的一种有效方法(例如,观察神经活动在相同实验条件下的试验中比在不同条件下的试验中更相似,或者检查在整个实验过程中记录的稳定性),这便于实验设计的快速迭代。通过对高维群体活动进行低维总结,降维是进行探索性数据分析的自然方法。

Intuition behind dimensionality reduction

降维通常应用于有 D D D个测量变量的设置,但人们怀疑这些变量会根据较少数量的解释变量 K K K(其中 K < D K < D K<D)共同变化。降维方法根据每种方法所特有的目标,从高维数据中发现并提取这些 K K K个解释变量。这些解释变量通常被称为潜在变量,因为它们没有被直接观察到。通常,任何没有被潜在变量捕获的数据方差都被认为是噪声。在这方面,降维就像许多统计方法一样:它提供了对感兴趣的统计特征的简洁描述,并丢弃了数据的某些方面作为噪声。

在神经群体活动的情况下, D D D通常对应于记录的神经元的数量。因为记录的神经元属于一个共同的底层网络,所以记录的神经元的响应可能不是相互独立的。因此,与记录的神经元数量相比,可能需要更少的潜在变量来解释群体活动。潜在变量可以被认为是共同的输入,或者更一般地说,与记录的神经元在同一网络中未观察到的神经元的集体作用。此外,许多降维方法都认为,单个神经元发出的动作电位的时间序列可以用一个潜在的、随时间变化的放电率来表示,由此产生的动作电位以随机的方式产生。这是神经科学中一个普遍的观点,无论是含蓄地陈述的(例如,在试验中平均峰值序列来估计时变的发射率)还是明确地陈述的(例如,峰值序列的统计模型)。先前的研究表明,随机分量倾向于类泊松,我们将其称为峰值变异性。降维的目标是描述不同神经元的放电率如何共同变化,同时将峰值变化作为噪声丢弃。因此,每个 D D D神经元都可以被视为提供了一个不同的、嘈杂的关于潜在的、共享的神经过程的视图,由 K K K个潜在变量捕获。潜在变量定义了一个 K K K维空间,它代表了在群体反应中突出的共享活动模式。
在这里插入图片描述
图2:三个神经元( D = 3 D=3 D=3)和两个潜在变量( K = 2 K=2 K=2)的线性降维的概念说明。中间图,群体活动(黑色点)位于一个平面上(灰色阴影)。每个点代表特定时间的群体活动,可以使用其高维坐标 [ r 1 , r 2 , r 3 ] [r_1,r_2,r_3] [r1,r2,r3]或低维坐标 [ s 1 , s 2 ] [s_1,s_2] [s1,s2]等效地表示。这些点会追踪出一段时间内的运动轨迹(黑色曲线)。左图,群体活动 r 1 r_1 r1 r 2 r_2 r2 r 3 r_3 r3可以通过取潜在变量的加权组合来重建,其中权重由所示的矩阵指定。右图,潜在变量 s 1 s_1 s1 s 2 s_2 s2可以通过取群体活动的加权组合得到,其中权重由所示的矩阵指定。

为了说明,考虑 D = 3 D=3 D=3神经元的情况。我们首先定义一个高维空间,其中每个轴代表一个神经元的放电率( r 1 r_1 r1 r 2 r_2 r2 r 3 r_3 r3;图2)。在这个框架中,群体活动的每个向量 [ r 1 , r 2 , r 3 ] [r_1,r_2,r_3] [r1,r2,r3]对应于这个空间中的一个点。然后我们可以问什么低维( K < D K < D K<D)空间可以很好地解释这些数据。在图2中,这些点位于一个平面上(灰色, K = 2 K=2 K=2),并追踪出随时间的轨迹。每个时间点 t t t对应于高维发射率空间中的一个单个点 [ r 1 ( t ) , r 2 ( t ) , r 3 ( t ) ] [r_1(t),r_2(t),r_3(t)] [r1(t),r2(t),r3(t)]。注意,时间没有绘制在任何一个轴上;每个轴代表一个神经元的放电率,时间在整个轨迹中隐含地演变。

对于线性降维,有两种互补的方式来考虑潜在变量和群体活动之间的关系。首先,可以通过采用潜在变量的加权组合来重建群体活动,其中的权重由降维方法确定(图2)。每个潜在变量时间过程( s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t))可以被认为是一个时间基函数:一种由不同神经元共享的共变活动的特征模式。 权重矩阵的第一列和第二列分别指定三维空间中的 s 1 s_1 s1 s 2 s_2 s2轴(图 2)。因此,可以将每个权重视为指定在重建每个神经元的响应时要使用多少时间基模式。其次,潜在变量可以被认为是高维群体活动的低维readouts或描述(在 [ s 1 , s 2 ] [s_1,s_2] [s1,s2]空间中;图2)。每个潜在变量都可以简单地通过取不同神经元活动的加权组合来得到。

一般来说, [ r 1 , r 2 , r 3 ] [r_1,r_2,r_3] [r1,r2,r3]空间中的点不会完全位于一个平面上。 在这种情况下,降维尝试找到可以尽可能重建群体活动的潜在变量。 重建的活动可以解释为每个神经元的去噪放电率。

Scientific studies using dimensionality reduction

在建立了降维的直觉之后,我们讨论了这些方法在神经科学文献中的使用,以及它们所揭示的、由分析神经群体的三个科学动机所组织的见解。

single-trial statistical power

在这里插入图片描述
图3:使用降维的科学研究的例子。(a) 单次试验的统计能力,视觉注意力。左图是一个将两个神经元的反应投射到注意轴(绿色;单位,峰值计数)上的例子。对于 V4 群体(右),沿该注意轴的归一化位置(即投影)可预测单次试验的行为:投影距离注意轴的右上角越远,动物越有可能正确检测到右侧变化,动物正确检测到左侧变化的可能性较小。(b) 群体反应结构,决策制定。记录在前额叶皮层的群体活动被投射到三个轴(单位,每秒的峰值):证据整合轴(choice axis)、相关的刺激轴(motion axis)和不相关的刺激轴(color axis)。每个轨迹对应于相同点运动(灰色轨迹)或点颜色(蓝色轨迹)的试验中的平均反应。尽管单神经元反应明显复杂,但在不同条件下,种群活动在不同的点运动和颜色条件下表现出有序的结构,提示了前额叶皮层信息门控和整合的网络机制。(c) 群体反应结构,运动系统。在运动皮层记录的群体活动被投射到一个平面上(单位,每秒峰值),在那里简单(旋转)动态最好被捕捉;不同的轨迹是不同的实验条件(手臂在插图中以相同的颜色显示)。点表示准备(运动前)神经活动,表明了单个神经元复杂性的机制解释:准备反应设定了贯穿运动的群体水平动态系统的初始状态。(d) 探索性数据分析,全脑级别。为了可视化的目的,在斑马鱼幼体的整个大脑中记录的群体活动被投影到其主成分上(同样的数据显示在左边的三维和二维,单位为∆F/F)。我们确定了四个反应阶段(标记为α、β、γ和δ),然后将它们连接回不同的神经结构。右图,每个阶段的轴向视图,绿色的点表示活跃的神经元,其置信区间是洋红色的(尾吻从左到右)。

越来越多的研究利用多个神经元的统计能力来表征单个试验中的群体活动。一个突出的例子是视觉注意力的研究,尽管实验者尽了最大努力,但视觉注意力可能随时都不同。为了研究视觉注意力背后的神经机制,有一组人在一个变化检测任务中记录了猴子V4区域的一个神经元群。然后,他们通过将群体活动投射到一维的“注意轴”上(图3a)建立了单次试验注意力测量,即降维到一条线上( K = 1 K=1 K=1)。注意轴由每个注意条件下每个神经元的平均响应定义。值得注意的是,作者发现,在注意轴上的投影预测了逐次试验的行为表现(图3a),这种效果在单个神经元水平上是不可能看到的。 这一发现的关键是预测,它利用整个记录群体的统计能力在单次试验的基础上估计潜在的注意力状态。

在其他几个关键的实验背景中,降维被应用于群体活动以揭示单次试验神经现象,包括决策制定研究、规则学习、运动计划和刺激定位。在这些研究中,仅使用群体反应进行了降维,而没有参考受试者的行为。然后,该行为被用来在单次试验的基础上验证提取的潜在变量。类似的方法可以用来研究在异常行为试验中的群体活动有何不同(即,错误试验)。

降维对于研究自发活动也很有价值,因为其中不存在可重复试验的概念,因此必须在单次试验的基础上进行分析。根据定义,自发活动涉及到群体活动的波动,而这些波动不是由实验者直接控制的。为了表征自发活动,可以应用降维方法提取每个时刻的低维网络状态。这有助于比较感觉和动作期间的自发活动与群体活动。

Population response structure

降维的另一个关键用途是检验只有在群体水平上才有效的科学假设。在几个不同的系统中,包括前额叶皮质、运动系统和嗅觉系统,都积极地进行了群体结构假设。这些系统的一个共同主题是,尽管神经反应在单个神经元的水平上可能看起来无可救药地复杂,但在群体的水平上存在着更简单的组织原则。

前额叶皮层中,一项研究检查了决策任务中相关和不相关刺激信息的表征,该任务包括72个不同的实验条件,涉及屏幕上点的运动和颜色(图3b)。在这项任务中,作者记录了前额叶皮层的1000多个神经元,产生了一个不容易总结或理解的大型反应数据库,这是单个神经元复杂性的一个典型例子。鉴于在单个神经元水平上缺乏简单的解释,他们询问是否可以将混杂的单神经元反应理解为群体水平上的简单动态过程。设计了一种降维方法来识别共享的潜在变量,每个潜在变量都解释了一个外部相关变量(受试者的选择、点运动、点颜色或任务上下文)。值得注意的是,低维表示是对群体活动的简单投影,而不是对这些相关变量的解码估计。将这种方法应用于实验数据中,作者发现群体活动与涉及一个线吸引子的低维动态过程相一致(图3b),这不能通过单独检查单个神经元来识别。此外,他们还发现,群体活动令人惊讶地同时携带了相关和不相关的刺激信息,而“门控”可以通过群体空间中沿着任务依赖方向的读出机制隐式地实现,这是一个固有的群体水平的概念。他们对降维的使用也在群体记录和网络理论之间架起了一座桥梁,其中实验数据和模型都表明了信息门控的类似动态过程。该机制还预测,对于不同的任务上下文,动态过程在群体空间中将具有不同的方向,可以通过实验验证该机制的有效性或无效性。实验和理论之间的这种联系是通过明智地使用降维来检验群体反应结构实现的。

运动系统中,另一组研究了在108个不同的实验条件下,通过记录初级运动皮层中的数百个神经元来实现伸展准备和执行(图3c)。与前面的例子一样,单神经元反应的异质性很难解释。通过应用降维,他们在群体水平上发现了一个一致的机制:准备活动设定了一个动态过程的初始状态,该状态随着运动的执行而展开。这种动态结构不能单独用单个神经元的反应来理解,需要进行群体分析来揭示任务的两个阶段之间的合法协调(图3c)。这种结构进一步预测了在单个神经元水平上,任务的准备阶段和执行相关阶段之间的神经元调节中缺乏相关性。最近,降维被用来表明,类似于相关信息读出方向的群体水平机制是运动系统在准备期内隐式运动门控的基础。

最后,通过群体反应结构的角度考虑了嗅觉系统中神经元对不同气味的反应。在这里,神经元和气味刺激的不同时间过程混淆了理解这些气味的基本编码的尝试。随着神经元的数量和刺激条件的增加,这项任务变得越来越困难。对蝗虫触角叶800个神经元中约100个进行了降维,群体活动追踪了由刺激条件组织的循环。特别是,环的方向与气味特性有关,而环的大小与气味浓度有关。这些结果以重要的方式扩展,以阐明这种编码的时间动态、上游嗅觉受体神经元的编码、时间结构的气味刺激、气味的快速时间波动、重叠气味的编码、气味混合物的编码等。

Exploratory data analysis

降维也是对大型神经数据集进行探索性数据分析的有用工具。一个明显的例子来自斑马鱼幼体在运动适应过程中以细胞分辨率对整个大脑进行的光学记录。在这种装置和类似装置中记录的数据数量惊人:超过80000个神经元每小时记录的活动超过1 TB。为了可视化并开始理解这些数据,作者应用降维方法揭示了四种不同类型的神经动态(图3d)。然后,他们将这一见解与神经结构联系起来,发现这些动态机制都对应于不同大脑区域的单个神经元,这表明这些区域都发挥了新的作用。因此,降维允许形成一个关于单个神经元反应特性的新假设。

即使从少量数量的神经元进行记录,也需要以简洁的方式可视化群体活动。降维已被用于不同大脑区域的数据可视化和假设生成,包括运动皮层、海马体、额叶皮层、听觉皮层、前额叶皮层、纹状体皮层和嗅觉系统。虽然这些研究大多是使用原始的神经活动(没有降维)来测试假设,但使用降维对于首先生成假设和指导后续的分析是至关重要的。随着神经数据集规模的增长,假设生成和由降维而促进的数据分析之间的相互作用可能变得越来越重要。

Selecting a dimensionality reduction method

正如前一节所说明的,有许多降维方法,每种方法所保留和丢弃的统计结构都不同。尽管许多方法有深刻的相似之处,但与任何统计技术一样,方法的选择可能会对可以做出的科学解释产生重大影响。由于这个原因,而且由于降维在系统神经科学中仍然相对较新,下面两部分将介绍这些方法,帮助现有用户进行方法选择和解释,并描述每个选择的潜在缺陷。我们描述了最常用于神经活动的降维方法(表1),并为它们的适当使用提供了指导。虽然下面的描述集中于峰值序列的电记录,但这些方法同样可以很好地应用于来自光学成像和其他类型的神经信号的荧光测量。
在这里插入图片描述

基本协方差法(basic covariance methods)

主成分分析(PCA)和因子分析(FA)是两种最基本和最常用的降维方法。为了便于说明,考虑 D = 2 D=2 D=2神经元和 K = 1 K=1 K=1潜在变量的情况(图4a)。我们首先形成原始的或处理过的(例如,试验平均的)峰值计数的高维向量。每个数据向量对应于图4a中的一个点。PCA识别出一组有序的正交方向,以捕获数据中最大的方差。最大方差的方向用 s 1 s_1 s1表示。正交的 s 2 s_2 s2轴(未显示)是捕获最小方差的方向。然后可以将数据投影到 s 1 s_1 s1轴上,形成一个一维的数据集,最能保持数据的协方差(图4a)。

尽管在某些情况下,捕获最大数量的方差可能是可取的,但需要注意的是,由PCA识别的低维空间捕获了所有类型的方差,包括发射率变异性和峰值变异性。由于峰值变化可能会掩盖潜在变量的解释,PCA通常应用于试验平均(在某些情况下,是时间平滑的)峰值计数,其中平均提前消除了大部分峰值变化。如果人们试图分析原始的峰值计数,FA可以用来更好地分离发射率的变化和峰值变异性。FA识别了一个低维空间,它保留了在神经元之间共享的方差(被认为是放电率变异性),同时丢弃了独立于每个神经元的方差(被认为是峰值变异性)。FA可以被视为PCA,并添加了一个显式的噪声模型,允许FA丢弃每个神经元的独立方差。
图4
图4:两个神经元( D = 2 D=2 D=2)的PCA、LDA和Demixed降维的概念说明。(a) PCA找到捕获数据(黑点,顶部)最大方差的方向( s 1 s_1 s1轴),显示在 s 1 s_1 s1轴上的投影(底部)。(b) LDA找到最能分隔两组点(黑点和白点,顶部)的方向( s 1 s_1 s1轴)。在 s 1 s_1 s1轴(底部)上的投影中可以看到分离。(c) Demixed降维找到解释点颜色变化的方向( s 1 s_1 s1轴,顶部)和解释点大小变化的正交方向( s 2 s_2 s2轴,未显示)。在 s 1 s_1 s1轴(底部)上的投影中可以看到圆点颜色的组织。请注意,这些插图是使用相同的数据点(点)创建的,正是使用不同的方法(利用不同的数据特征,如(b)中的群体资格或(c)中的颜色和大小)在顶部面板上产生了不同的方向 s 1 s_1 s1,在底部面板上产生不同的投影。

时间序列方法(time series methods)

如果数据形成一个时间序列,就可以利用数据的顺序特性来提供进一步的去噪,并表征群体活动的时间动态。虽然针对多神经元峰值序列的时间序列方法已经有了许多重要的发展,但我们专注于这些方法的一个子集,这些方法以无监督的方式识别低维结构(即,一些或所有神经活动的预测因子未被直接观察到)。

时间序列的降维有几种方法可用:隐马尔可夫模型(HMM),核平滑后采用静态降维方法,高斯过程因子分析(GPFA),潜在线性动态系统(LDS)和潜在非线性动态系统(NLDS)。所有这些方法都返回低维的、潜在的神经轨迹,以捕获每个高维时间序列的神经元之间的共享可变性。HMM应用于群体活动被认为在离散状态之间跳跃的环境中,而所有其他方法都可以识别发射率随时间的平滑变化(其中平滑度由数据确定)。描述一个神经元群体的试验平均反应的一种常见方法是在试验间进行平均,并暂时平滑每个神经元的反应,然后应用PCA。这为每个实验条件产生了一个神经轨迹,并促进了不同条件下的群体活动的比较。相比之下,HMM、GPFA、LDS和NLDS通常应用于单次试验群体活动。这产生了单次试验的神经轨迹,这有助于跨试验比较群体活动,以及低维动态模型,该模型描述了群体活动如何随时间演变。这些方法特别适用于单次试验的群体活动,因为它们有明确的噪声模型(类似于FA)。

请注意,在解释神经轨迹时,理解从高维种群活动中提取它们的步骤和假设是很重要的。对于具有显式动态模型的方法,其参数首先拟合到一组(训练)试验。然后,通过在动态模型和有噪声(测试)数据之间进行统计权衡,可以提取一个低维轨迹。因此,一个特定的低维轨迹可能是反映了动态模型的数据。例如,GPFA中的动态模型是固定的,并鼓励轨迹保持平滑,而LDS和NLDS中的动态模型通常是非固定的,并鼓励轨迹遵循特定的动态主题。因此,我们建议使用简单的第一种方法,例如对平滑、试验平均数据的PCA或对单个试验数据的GPFA,然后可以指导选择有向动态模型,如LDS或NLD。在所有情况下,所提取的轨迹都应该在动态模型所鼓励的结构类型的背景下谨慎地解释。

如果寻找数据投影的轨迹(不需要与动态模型进行统计权衡),则可以使用正交投影(类似于PCA)在使用涉及动态模型的方法识别低维空间后提取低维轨迹。然后,提取的轨迹只是数据的投影,不受动态模型的约束,即放弃了动态模型将提供的轨迹去噪。该方法旨在研究神经群体动力学的旋转结构。

具有因变量的方法(methods with dependent variables)

在许多实验设置中,高维发射率空间中的每个数据点都有一个或多个因变量的相关标签。这些因变量可能对应于实验参数(例如,刺激身份)、被试的行为(例如,决策身份)或时间指数。降维的一个可能目标是投射数据,使这些因变量的差异得以保留,这与上述所有以无监督的方式发现群体活动结构的方法相反。如果每个数据点都属于 G G G组(例如,实验条件)中的一个,则可以使用线性判别分析(LDA)来找到一个 G G G组分离良好的低维投影。LDA识别了一组有序的 G − 1 G−1 G1方向,其中组间方差相对于组内方差最大。以 D = 2 D=2 D=2神经元和 G = 2 G=2 G=2组为例(图4b,顶部)。当数据点投影到 s 1 s_1 s1轴上时,两组被很好地分离。

如果每个数据点都有多个因变量(例如,刺激身份和决策身份),那么人们可能会寻求“分解”不同因变量的影响,这样每个投影轴(即潜在变量)就可以捕获单个因变量的方差。这通过根据外部可测量的变量为投影轴分配意义,通常有助于在低维空间中定位用户。在神经科学文献中使用了三种密切相关的方法,我们统称称之为demixed降维:线性回归的变体,协方差的差异方法和概率扩展。考虑一个包含 D = 2 D=2 D=2神经元和每个数据点的两个属性(点大小和点颜色)的例子(图4c)。对这些数据应用解维降低得到一个方向 s 1 s_1 s1,这最优地解释了点颜色的方差,和一个正交方向 s 2 s_2 s2(未显示),这解释了点大小的方差。当数据点投影到 s 1 s_1 s1上时,可以看到点颜色的组织。通过将数据投影到正交的 s 2 s_2 s2轴上,可以看到类似的点大小的组织。请注意,这两个属性沿正交轴变化(图4c),尽管在实际数据中不需要如此。在方法上,当因变量具有连续的值(而不是几个离散值)时,应使用线性回归变量,而当因变量的值没有明显的顺序(例如,不同的刺激类别)时,则应使用协方差差方法。

非线性降维方法(Nonlinear dimensionality reduction methods)

迄今为止,所提出的大多数方法都定义了潜在变量和观察变量之间的线性关系(图2和4)。一般来说,数据可能位于高维空间中的一个低维的非线性流形上。根据非线性的形式,线性方法可能需要比数据中的真实维数更多的潜在变量。识别非线性流形的两种最突出的方法是Isomap和局部线性嵌入(LLE)。与线性方法一样,由非线性方法产生的低维嵌入应该谨慎地解释。有几种非线性方法利用局部邻域来估计流形的结构。因为群体反应通常不会均匀地探索高维空间(一个随着神经元数量呈指数增长的问题),局部邻域可能只包括沿同一轨迹的时间相邻点。因此,轨迹之间的差异可以在低维嵌入中被放大,并应该相应地进行解释。为了获得更均匀的高维空间采样,有必要大幅增加标准任务范式(例如,所呈现的刺激或被诱导的行为)的丰富性和多样性。此外,非线性降维方法在存在噪声的情况下往往是脆弱的,这限制了它们在单次试验群体分析中的使用。这些警告表明,线性降维是大多数分析的一个合理的起点。在进行非线性方法之前,应该确保有一个足够密集的抽样高维空间,使得局部邻域包含来自不同轨迹(或实验条件)的数据点,并且在单次试验分析的情况下,非线性方法对神经元的类泊松峰值变异性具有鲁棒性。

Practical use

根据所提出的科学问题,首先应该使用上述准则选择一种合适的降维方法。然后,可以执行必要的数据预处理(例如,取峰值计数、试验平均值和/或时间平滑数),并将所选的方法应用于群体活动。后一步包括找到潜在维度,估计模型参数(如果适用),并将高维数据投影到低维空间(类似于图2)。这就产生了一个群体活动的低维表示。本节提供了关于对数据进行预处理、估计和解释潜在维数、运行所选的降维方法以及可视化低维投影的实用指导方针。我们指出了群体活动分析所特有的警告和潜在的陷阱,以及与高维数据分析有关的更一般的陷阱。

数据预处理

应该对数据进行预处理,以确保对降维的合理输入。同时也存在一些典型的陷阱。首先,我们应该确保神经元不会因为琐碎的原因(即非生物学的)原因而共变,这可能会严重混淆任何降维方法。例如,电极之间的电交叉耦合导致神经元之间的正相关,以及人工将单个神经元的反应分成两个(无论是由于光学记录中的神经元接近还是电极记录中的峰值排序),从而导致神经元之间的负相关。其次,具有低平均放电率(例如,每秒小于一个峰值)的神经元通常应该被排除在外,因为使用某些方法,任何神经元的几乎为零的方差都可能导致数值不稳定。第三,对于PCA,可以考虑将每个神经元的活动进行归一化(即z评分),因为PCA可以由调制深度最高的神经元主导。对于大多数其他的降维方法来说,这并不那么重要,其中潜在变量对每个神经元的活动规模是不变的。根据这些考虑,数据可以通过采取binned峰值计数、在试验中求平均值和/或在时间上进行核平滑来预处理。

估计和解释维度

对于低维投影,许多降维方法都需要选择维数( K K K)。维数可以被认为是在高维发射率空间中的群体活动所探索的方向数(图2)。从科学上讲,维度是群体活动的复杂性度量,并可能暗示了潜在的电路机制。例如,低维可能表明只有少数共同驱动因素负责群体活动。另一方面,更高的维度可能为下游神经元从记录的群体中读出信息提供了优势。

估计维数最基本的方法是为由低维投影解释的方差选择一个截止值,并选择 K K K以超过截止值。考虑到截止值通常是任意的,交叉验证可能更喜欢询问有多少维度可以泛化来解释保留的数据。对于概率方法(如FA、GPFA、LDS和NLDS),我们可以识别出使交叉验证数据似然值最大化的维数。或者,对于所有的线性方法和一些非线性方法,一个交叉验证的leave-neuron-out的预测误差可以代替数据的可能性进行计算。另一种方法是评估可以由线性分类器实现的二值分类的数量。一般来说,估计的维数会受到估计方法的选择、所包含的神经元数量、实验设置的丰富度和给定数据集中数据点的数量的影响。这些考虑表明,对维度做出相对的陈述比绝对的陈述更安全。

计算运行时

虽然对每种方法的计算运行时的详细分析超出了本文的范围,但我们将讨论一些经验法则。对于线性方法,有两个步骤:估计模型参数,然后将数据投影到低维空间。对于估计模型参数,只需要单个矩阵分解的方法(如PCA和LDA)往往比使用迭代算法(如期望最大化)或子空间识别方法的方法(如FA、GPFA、LDS和NLDS)更快。涉及动态模型的方法(如GPFA、LDS和NLDS)往往比不涉及动态模型的方法(如FA)需要更多的计算。相对于对模型参数的估计,将数据投影到低维空间的第二步都是快速的。为了估计潜在维数,交叉验证的计算要求很高,因为它要求模型参数拟合 m × n m×n m×n次,其中 m m m是交叉验证折叠的数量, n n n是候选潜在维数的数量。随着记录的神经元数量的持续增长,计算效率将成为在神经科学中使用降维时越来越重要的考虑因素。

可视化

理想情况下,我们希望将提取的 K K K维空间中直接可视化的潜在变量。如果 K ≤ 3 K≤3 K3,则可以使用标准绘图法。对于较大的 K K K,一种可能性是可视化少量的二维投影,这可能会错过显著特征或提供潜在变量的误导印象,尽管存在快速可视化工具来帮助解决这一限制。

在分析高维数据时可能存在的潜在缺陷

在分析多元数据时,重要的是要记住,来自二维或三维空间的直觉在高维空间中可能不成立。例如,人们可能会问,两个不同的低维空间在高维空间中是否具有相似的方向,这是通过比较高维空间中的向量之间的角度来评估的。随着维数的增加,两个随机选择的向量将变得越来越正交。因此,正交性的评估应该相对于角度的机会分布来进行,而不是来自低维空间的直观期望。作为第二个例子,LDA随着数据维数的增加(对于固定数量的数据点),分离两类训练数据的能力有所提高。在足够高的维数下,任意固定数量的数据点都可以被任意很好地分离出来。这两个例子强调了在分析高维数据时需要谨慎。

Broader connections

我们关注的是数据环境,其中降维是一种合适的分析方法。然而,降维绝不是分析神经种群活动的唯一方法。几十年来,研究一直在考虑神经元对的活动是如何协同变化的。转移到更大的群体中,研究使用基于回归的广义线性模型(GLMs)、峰值词分布和解码方法来表征群体活动。在这里,我们描述了这些相关的方法,它们与降维的联系,以及它们可以作为一个更合适的选择的上下文。

首先,顾名思义,GLM是对可解释性变量和群体活动之间的传统线性-高斯关系的推广。GLM可以直接使用泊松计数分布或点过程分布来模拟峰值序列。它可用于可解释性变被观察或未被观察(即潜在)的环境中。前者是线性回归的推广,而后者是线性降维的推广。因此,选择是否使用GLM(而不是更传统的线性高斯模型)与选择是否进行降维是分开的。也可以在既有观察到又有未观察到的可解释性变量的环境中使用GLM。GLM被广泛用于回归设置,以根据整个记录的群体和刺激的近期历史来解释一个神经元的放电。这种方法适用于大多数(或全部)相关可解释性变量都被观察到的情况,并能提供对刺激依赖性和功能连通性的洞察。相比之下,如果相关的可解释性变量未被观察到(例如,由于网络中有共同的输入或未被观察到的神经元),则应该使用降维(有或没有GLM)来解决关于集体群体动态和可变性的问题。

其次,一个表征群体活动的非参数方法是测量观察每一个可能的峰值计数向量(称为峰值词)的概率。这产生了一个离散的概率分布,然后可以使用信息理论措施在实验条件下进行比较。这种方法捕获了神经元之间的高阶相关性,并保留了与基于二阶统计数据和潜在放电率假设的许多降维方法相关的峰值的精确时间。是否有必要考虑到更高阶的相关性和精确的峰值时间取决于特定的大脑区域或正在研究的科学问题。由于可能的峰值词的数量随着神经元的数量呈指数级增长,因此峰值词的分析通常被限制在几十个神经元的范围内,需要大量的数据。

第三,降维方法与群体解码方法密切相关。与降维类似,解码将高维群体活动减少到更少的变量。一些突出的例子包括解码感官刺激、物理位置、手臂运动、工作记忆、物体信息等等。关键的区别是,解码寻求的预测外部变量,而降维则产生了神经活动本身的低维表征(潜在变量)。解码性能随着神经元数量的增加而增加的事实表明,与单个神经元相比,神经元群体可以提供更多关于外部变量或内部变量的信息。

Discussion

科学的主要追求之一是用简单的术语来解释复杂的现象。系统神经科学也不例外,几十年的研究都试图在单个神经元的水平上找到简单性。标准的分析程序包括构建简单的参数调整曲线和响应场,只分析记录的神经元的一个选择子集,并通过对神经元和试验的平均来创建群体平均值。最近,研究已经开始拥抱单神经元的异质性,并在群体的水平上寻求简单性,这通过降维来实现。这种方法已经为网络动态如何产生感觉、认知和运动功能提供了新的见解。随着人们对研究认知和其他大脑内部过程的兴趣日益增长,随着大规模记录技术的不断发展和采用,降维和相关方法可能变得越来越必要。

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值