周志华《机器学习》Ch7. 贝叶斯分类器:朴素贝叶斯分类器的python实现

理论

 记c为类标,\mathbf{x}为输入,由贝叶斯公式,P(c|\mathbf{x}) = \frac{P(c)P(\mathbf{x}|c)}{P(\mathbf{x})}. 朴素贝叶斯分类器假设每个属性相互独立,P(\mathbf{x}|c) = \prod\limits_{i=1}^dP(x_i|c). 对于所有类别来说,P(\mathbf{x})相同,因此朴素贝叶斯分类器对\mathbf{x}的类标判别c_\mathbf{x}=\arg \max\limits_{c\in{Y}}P(c)\prod\limits_{i=1}^dP(x_i|c)

D_c表示训练集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值