题目描述
给出一个长度不超过 200200 的由小写英文字母组成的字母串(该字串以每行 2020 个字母的方式输入,且保证每行一定为 2020 个)。要求将此字母串分成 �k 份,且每份中包含的单词个数加起来总数最大。
每份中包含的单词可以部分重叠。当选用一个单词之后,其第一个字母不能再用。例如字符串 this
中可包含 this
和 is
,选用 this
之后就不能包含 th
。
单词在给出的一个不超过 66 个单词的字典中。
要求输出最大的个数。
输入格式
每组的第一行有两个正整数 �,�p,k。 �p 表示字串的行数,�k 表示分为 �k 个部分。
接下来的 �p 行,每行均有 2020 个字符。
再接下来有一个正整数 �s,表示字典中单词个数。 接下来的 �s 行,每行均有一个单词。
输出格式
11个整数,分别对应每组测试数据的相应结果。
输入输出样例
输入 #1复制
1 3 thisisabookyouareaoh 4 is a ok sab
输出 #1复制
7
说明/提示
【数据范围】
对于 100%100% 的数据,2≤�≤402≤k≤40,1≤�≤61≤s≤6。
【样例解释】 划分方案为 this / isabookyoua / reaoh
【题目来源】
NOIP 2001 提高组第三题
这题做了好久......两个动态规划,我谈谈我用C语言的做法。
①每读取一行可以用strcat把字符串连在一起
②从字符串A中搜索单词word可以用char *p=strstr(A,word);
返回NULL则找不到,顺带可以用p-A==0来判断单词是否从A[0]开始匹配。
③先预处理出w[i][j],表示从i到j的单词数。可以倒着推,w[i][j]=w[i+1][j];(如果存在从A[i]字母开始的单词,则w[i][j]=w[i+1][j]+1.出现同一字母开头的多个单词也还是加1就够了.)
④F[i][j]表示前i个字母分成j段得到的最大单词数,答案是F[len][k],可以初始化一下F[i][i]和F[i][1]. 方程F(i,j)=max{ F(r,j-1)+w(r+1,i) (r=j...i-1) }. 意思就是把1..r的字母先分成j-1段,剩下的r+1..i的字母分成另一段。
#include<stdio.h>
#include<string.h>
int p,k,s,len,w[205][205],F[205][45];
char A[205],temp[25],word[10][205];
void Input(void)
{
int i;
scanf("%d%d",&p,&k); len=20*p;
while(getchar()!='\n');
while(p--)
{
gets(temp);
strcat(&A[1],temp);
}
scanf("%d",&s);
while(getchar()!='\n');
for(i=1;i<=s;i++) gets(word[i]);
}
int have(int x,int end)//是否存在以字符A[x]开头的单词
{
int i;
for(i=1;i<=s;i++)
{
char *p=strstr(&A[x],word[i]);
if(p!=NULL && p-&A[x]==0
&& strlen(word[i])<=end-x+1) return 1;
}
return 0;
}
void Init(void)
{
int i,j;
for(j=len;j>=1;j--)
for(i=j;i>=1;i--)
if(have(i,j)) w[i][j]=w[i+1][j]+1;
else w[i][j]=w[i+1][j];
}
void DP(void)
{
int i,j,r;
for(i=1;i<=k;i++) F[i][i]=F[i-1][i-1]+w[i][i];
for(i=1;i<=len;i++) F[i][1]=w[1][i];
for(i=1;i<=len;i++)
for(j=2;j<=k&&j<i;j++)
for(r=j;r<i;r++)
if(F[i][j]<F[r][j-1]+w[r+1][i])
F[i][j]=F[r][j-1]+w[r+1][i];
}
int main(void)
{
Input();
Init();
DP();
printf("%d",F[len][k]);
return 0;
}