线性代数 --- Gauss消元的部分主元法和完全主元法

Gauss消元的部分主元法和完全主元法 

心怀二意的人,在他一切所行的路上都没有定见。----雅各书1章8节

        笔者的一些话刚开始写这篇文章的时候,我觉得高斯消元很简单。因为,这时的我已经完成了我一直想写的一篇关于高斯消元的文章。

线性代数 --- 什么是高斯消元法,什么又是高斯-若尔当消元?_松下J27的博客-CSDN博客_高斯若尔当消元法Gauss Jordan Elimination高斯若尔当消元法

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

松下J27

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值