过拟合解决方式及原理

降低模型复杂度

减小迭代次数

数据增强

正则化

批归一化

  • 通过规范化手段,把每层神经网络任意神经元的输入值的分布强行拉回到均值为0,方差为1的标准正态分布,对数据分布增加约束即一定程度破坏了原来的数据分布,相当于增加了噪声,所以缓解过拟合。
  • 使用bn后可以取消dropout和L2

Dropout

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值