TensorFlow关于队列的简单使用及其理解

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/daixiangzi/article/details/79967057
其他人的理解,很好,所以copy过来了。入队操作都在主线程中进行,Session中可以多个线程一起运行。 在数据输入的应用场景中,入队操作从硬盘上读取,入队操作是从硬盘中读取输入,放到内存当中,速度较慢。 使用QueueRunner可以创建一系列新的线程进行入队操作,让主线程继续使用数据。如果在训练神经网络的场景中,就是训练网络和读取数据是异步的,主线程在训练网络,另一个线程在将数据从硬盘读入内存
#codeing=utf-8
import tensorflow as tf
p = tf.FIFOQueue(3, tf.float32)
init = p.enqueue_many(([0.,0.,0.],)) #初始化值队列
x = p.dequeue() #出队列
y = x+1
p_init = p.enqueue(y) #进队列
with tf.Session() as sess:
    sess.run(init)
    for i in range(9):
        _, result =sess.run([p_init, x])
        print(result)

结果:





阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页