Unsupervised Deep Structured Semantic Models for Commonsense Reasoning
origin
2019 naacl
Shuohang Wang1∗ , Sheng Zhang2, Yelong Shen4, Xiaodong Liu3,
Jingjing Liu3, Jianfeng Gao3, Jing Jiang1
1Singapore Management University,
2Johns Hopkins University,
3Microsoft, 4Tencent AI Lab
motivation
常识推理是自然语言理解里非常关键的问题,在过去的研究中主要采用的是基于手写规则库的方法,由于人工成本巨大,目前缺乏标注数据或者手写规则库,本文期望通过从一些原始的文本中学习常识知识,本文提出深度结构语义模型(DSSM),模型在WSD和PDP(代词消歧)任务上达到SOAT。
为了更清楚的了解两个任务,这里举两个例子:
model
这里主要有两个模型 DSSM-1 和DSSM-2
首先介绍模型1
模型1基于假设:同一个句子中,代词指代的是它的先行词(本文里考虑的是在代词前边的名词)