Unsupervised Deep Structured Semantic Models for Commonsense Reasoning

本文提出深度结构语义模型(DSSM)用于无监督的常识推理,旨在从原始文本中学习常识知识。DSSM在词汇消歧(WSD)和代词消歧(PDP)任务上表现优秀。模型包括DSSM-1和DSSM-2,分别基于不同的假设进行句子分割和负例生成。实验结果显示,DSSM在PDP和WSC任务上达到当前最优水平。
摘要由CSDN通过智能技术生成

Unsupervised Deep Structured Semantic Models for Commonsense Reasoning

origin

2019 naacl
Shuohang Wang1∗ , Sheng Zhang2, Yelong Shen4, Xiaodong Liu3,
Jingjing Liu3, Jianfeng Gao3, Jing Jiang1
1Singapore Management University,
2Johns Hopkins University,
3Microsoft, 4Tencent AI Lab

motivation

常识推理是自然语言理解里非常关键的问题,在过去的研究中主要采用的是基于手写规则库的方法,由于人工成本巨大,目前缺乏标注数据或者手写规则库,本文期望通过从一些原始的文本中学习常识知识,本文提出深度结构语义模型(DSSM),模型在WSD和PDP(代词消歧)任务上达到SOAT。
  为了更清楚的了解两个任务,这里举两个例子:
  在这里插入图片描述

model

这里主要有两个模型 DSSM-1 和DSSM-2
在这里插入图片描述
首先介绍模型1
模型1基于假设:同一个句子中,代词指代的是它的先行词(本文里考虑的是在代词前边的名词)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值