Latent Variables的理解

加入我们有X,Y两个随机变量,他们的概率分布如下。要直接用一个函数还表示这个分布是比较困难的。

但我们发现这个分布可以分成三个聚类。如果我们给每个聚类编号为z\in \left \{ 1,2,3 \right \}

那么p(x;z)就是简单的高斯函数了。

这里z就是

加入latent variable的意义在于,能够把复杂的问题变成多个简单的问题的和。

另外一种理解是,x是我们观察的值。这些观测值只是表面现象,但真正影响这些现象的是背后的一些latent variable。如果知道这些latent的取值,分布就会简单很多。这也是为什么概率inference里面也要研究latent variable。latent variable的问题,本身是个聚类的问题。也是找到系统的结构的问题。

比如在求p(x|\theta )的分布时,如果引入一个latent variable,就可以用EM进行迭代求解。

  • 10
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Latent SVM(隐式SVM)是一种基于SVM的监督学习算法,用于分类和目标检测任务。与传统的SVM不同,Latent SVM不需要手动提取特征,而是可以自动从数据中学习到特征。 Latent SVM的原理是,在训练过程中,它不仅学习分类器的参数,还学习隐藏变量(latent variables)的参数。这些隐藏变量可以表示多个可能的物体位置和尺度,从而使模型可以对物体进行精确的定位和识别。在测试过程中,Latent SVM通过最大化每个测试图像的判别函数得分来确定最佳的物体位置和尺度。 具体来说,Latent SVM的训练过程包括以下步骤: 1. 对于每个训练样本,从图像中随机选取一个物体位置和尺度作为初始值。 2. 使用当前的参数估计和当前的物体位置和尺度,计算判别函数得分。 3. 如果得分高于阈值,则保留当前的物体位置和尺度,并更新参数估计。 4. 使用当前的参数估计和当前的物体位置和尺度,计算判别函数得分。如果得分仍然高于阈值,则重复步骤3和4,直到得分低于阈值或达到最大迭代次数。 5. 对于每个训练样本,重复步骤1到4,并计算平均损失函数。 6. 使用梯度下降等优化算法来最小化损失函数,更新参数估计。 在测试过程中,Latent SVM使用训练得到的参数估计和预定义的物体尺度范围,在测试图像中搜索最佳的物体位置和尺度,并计算判别函数得分。最终,Latent SVM输出具有最高得分的物体位置和尺度作为检测结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值