SLAM
文章平均质量分 85
Dang_boy
这个作者很懒,什么都没留下…
展开
-
一阶梯度法、二阶段梯度法、牛顿法
目标有一个函数f(x)f(x)f(x),我们要求得函数的最小值(或者最大值),由于最值点一般也是极值点,所以求出所有极值点,然后进行对比就能得到我们要的最值,可以理解为一个最小二乘的问题minx12∥f(x)∥22\min_x \frac {1}{2}\| f(x)\|^2_2xmin21∥f(x)∥22解法最暴力的方法,直接求解d12∥f(x)∥22dx=0\frac {d \fr...原创 2018-11-15 11:05:05 · 15000 阅读 · 3 评论 -
相机标定的数学原理及其推导过程
接着上一篇博客计算机视觉之相机模型推导建立过程在上一篇博客中介绍了针孔模型,这篇博客介绍一下相机的畸变参数,然后对推导过程做了详细的推导。畸变参数:由于针孔模型透光很少,导致相机的曝光时间很长,现实生活中一般使用凸透镜代替针孔,大大提高了曝光效率,但是代价便是引入了畸变。畸变主要分为两种,切向畸变和径向畸变。径向畸变:由于一般透镜在制作过程中,由于工艺问题,所以光在离中心越远的地方折射...原创 2018-02-28 17:58:12 · 2978 阅读 · 0 评论 -
计算机视觉之相机模型推导建立过程
世界坐标系:物体的真实世界坐标(三维)相机坐标系:相对于相机建立的坐标系(三维)图像坐标系:成像面上以光轴为原点的坐标系(二维)像素坐标系:成像面上以左上角为原点的坐标系(二维),注意单位是整形的,因为像素是一个一个的。齐次坐标:可以简单的理解成用多一维表示低纬的坐标。例如的齐次形式可以表示为,对应的关系为x=X/Zy=Y/Z一般可以令Z=1,则x=X,y=Y...原创 2018-02-25 23:33:07 · 2037 阅读 · 0 评论 -
最小二乘法与岭回归的介绍与对比
一 线性回归(最小二乘法)假设我们有n个样本数据,每个数据有p个特征值,然后p个特征值是线性关系。即对应的线性模型写成矩阵的形式即是Y=XA由于样本与模型不一定百分百符合,存在一些噪声,即误差,用B表示,B也是一个向量即B=Y-XAY为样本值,XA为模型的计算值,即期望值误差的平方的计算公式Xi为行向量,A为列向量。最小二乘法的目标就是取得最小的e对应的A,...原创 2017-11-11 00:20:20 · 31134 阅读 · 1 评论 -
卡尔曼滤波的理解以及推导过程
针对的系统为:状态方程 X(k)=AX(k-1)+Bu(k-1)+W(k-1)测量方程 Z(k)=HX(k)+V(k) 0W是状态预测的噪声 符合正态分布N(0,Q)V 是测量的噪声 符合正态分布N(0,R)理解:一般测量值Z(k)为外界提供,大概是采用一种不同的方式去获取同一个目标值(值不一定...原创 2017-11-01 22:16:05 · 16601 阅读 · 4 评论 -
特征分解的推导与意义与opencv代码
特征值与特征向量定义:Ax⃗=λx⃗A\vec{x}=\lambda\vec{x}Ax=λx 则称λ\lambdaλ为矩阵A的特征值,x⃗\vec{x}x称为λ\lambdaλ对应的特征向量。假设A是一个可对角化的矩阵,并且具有n个线性独立的特征向量P=[P1⃗ P2⃗ P3⃗…Pn⃗]P=[\vec{P_1} \ \vec{P_2}\ \vec{P_3} … \vec{...原创 2018-12-20 12:42:32 · 1139 阅读 · 0 评论 -
奇异值分解的理解与oepncv代码
特征分解的缺点特征分解的推导与意义与opencv代码在上一篇博客中介绍了特征分解的原理和推导,特征分解在一定的情况下可以很好的分解(实对称矩阵),但是也有很大的局限性1. 只能对可对角化的方阵使用2. 在可以对角化的情况下,特征向量之间也不一定相互正交为了克服这些缺点,我们便在寻找对一个任意的M*N的矩阵都能找到一个类似特征分解的公式:先将在以I为正交基底的情况下,转换到另一个正交...原创 2018-12-21 12:27:33 · 677 阅读 · 1 评论 -
最小二乘法求解超定方程的原理
假设我们要求解一个方程AX=0AX=0AX=0其中,A是一个n∗mn*mn∗m的矩阵,X是一个m∗1m*1m∗1的向量一般情况下,n>>m,这就是一个超定方程了,理论上无解,但是我们可以求得最小二乘意义下的解求解过程min∣∣AX∣∣22min||AX||^2_2min∣∣AX∣∣22∣∣AX∣∣22=(AX)T(AX)=XTATAX||AX||^2_2=(AX)^T(...原创 2019-03-11 16:19:40 · 8086 阅读 · 0 评论 -
从贝叶斯到卡尔曼
背景介绍假设我们的模型是这个样子的{ xk=f(xk−1,uk)+wk预测方程 zk=h(xk)+vk观测方程\begin{cases} \ x_k=f(x_{k-1},u_k)+w_k & 预测方程 \\ \ z_k=h(x_k)+v_k& 观测方程\end{cases} { xk=f(xk−1,uk)+wk&nb...原创 2019-05-09 18:31:37 · 1328 阅读 · 1 评论