特征值与特征向量
定义: A x ⃗ = λ x ⃗ A\vec{x}=\lambda\vec{x} Ax=λx 则称 λ \lambda λ为矩阵A的特征值, x ⃗ \vec{x} x称为 λ \lambda λ对应的特征向量。
假设A是一个可对角化的矩阵,并且具有n个线性独立的特征向量 P = [ P 1 ⃗ P 2 ⃗ P 3 ⃗ … P n ⃗ ] P=[\vec{P_1} \ \vec{P_2}\ \vec{P_3} … \vec{P_n}] P=[P1 P2 P3…Pn],对应的特征值为 Λ = [ λ 1 ⋱ λ n ] \Lambda=\left[ \begin{matrix} \lambda_1 & & \\ & \ddots & \\ && \lambda_n \end{matrix} \right] Λ=⎣⎡λ1⋱λn⎦⎤, 可以将 y ⃗ = A x ⃗ \vec{y}=A\vec{x} y=Ax进行这样的理解
由于P由n个线性独立的向量组成,所以 x ⃗ \vec{x} x肯定可以表示再P的基底下,即 x ⃗ = I x ⃗ = a 1 P 1 ⃗ + a 2 P 2 ⃗ + … + a n P n ⃗ = P [ a 1 a 2 ⋮ a n ] \vec{x}=I\vec{x}=a1\vec{P_1}+a2\vec{P_2}+…+an\vec{P_n}=P \left[\begin{matrix} a_1\\a_2\\ \vdots \\a_n \end{matrix} \right] x=Ix=a1P1+a2P2+…+anPn=P⎣⎢⎢⎢⎡a1a2⋮an⎦⎥⎥⎥⎤
则
y ⃗ = A x ⃗ = A P [ a 1 a 2 ⋮ a n ] = [ A