特征分解的推导与意义与opencv代码

特征值与特征向量是线性代数中的重要概念,对于可对角化矩阵A,可以通过特征分解将其转换为PΛP^(-1),其中P是特征向量组成的矩阵,Λ是对角化后的特征值矩阵。本文介绍了特征值和特征向量的定义,通过实例展示了在图像处理中的应用,以及OpenCV库中相关函数的使用,包括对称矩阵和非对称矩阵的处理。
摘要由CSDN通过智能技术生成

特征值与特征向量

定义: A x ⃗ = λ x ⃗ A\vec{x}=\lambda\vec{x} Ax =λx 则称 λ \lambda λ为矩阵A的特征值, x ⃗ \vec{x} x 称为 λ \lambda λ对应的特征向量。
假设A是一个可对角化的矩阵,并且具有n个线性独立的特征向量 P = [ P 1 ⃗   P 2 ⃗   P 3 ⃗ … P n ⃗ ] P=[\vec{P_1} \ \vec{P_2}\ \vec{P_3} … \vec{P_n}] P=[P1  P2  P3 Pn ],对应的特征值为 Λ = [ λ 1 ⋱ λ n ] \Lambda=\left[ \begin{matrix} \lambda_1 & & \\ & \ddots & \\ && \lambda_n \end{matrix} \right] Λ=λ1λn, 可以将 y ⃗ = A x ⃗ \vec{y}=A\vec{x} y =Ax 进行这样的理解

由于P由n个线性独立的向量组成,所以 x ⃗ \vec{x} x 肯定可以表示再P的基底下,即 x ⃗ = I x ⃗ = a 1 P 1 ⃗ + a 2 P 2 ⃗ + … + a n P n ⃗ = P [ a 1 a 2 ⋮ a n ] \vec{x}=I\vec{x}=a1\vec{P_1}+a2\vec{P_2}+…+an\vec{P_n}=P \left[\begin{matrix} a_1\\a_2\\ \vdots \\a_n \end{matrix} \right] x =Ix =a1P1 +a2P2 ++anPn =Pa1a2an

y ⃗ = A x ⃗ = A P [ a 1 a 2 ⋮ a n ]                = [ A

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值