n阶贝塞尔曲线的理解以及c++编程实现

本文介绍了贝塞尔曲线的原理、理解和编程实现。贝塞尔曲线至少需要两个控制点,通过迭代公式计算各阶点,最终得到贝塞尔曲线。采用递归方式用C++实现,并结合OpenCV展示结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

贝塞尔曲线的原理(BezierCruve)

查看原理戳我
这里就不介绍推导过程了,值得注意的是文章中的线段都是矢量,然后线段都可以被拆分成两个坐标的差来表示 A B = B − A AB=B-A AB=BA一开始看有点蒙蔽,代入这个等式后,之后所有的推导都可以理解。这里就直接介绍一下结论 P i k ( t ) = { P i ( t ) k=0 ( 1 − t ) P i k − 1 ( t ) + t P i + 1 k − 1 ( t ) , k=1,2,3 … n;i=0,1,2 … n-k P_i^k(t)= \begin{cases} P_i(t) & \text {k=0} \\ (1-t)P_i^{k-1}(t)+tP_{i+1}^{k-1}(t), & \text{k=1,2,3…n;i=0,1,2…n-k} \end{cases} Pik(t)={ Pi(t)(1t)Pik1(t)+tPi+1k1

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值