贝塞尔曲线的原理(BezierCruve)
查看原理戳我
这里就不介绍推导过程了,值得注意的是文章中的线段都是矢量,然后线段都可以被拆分成两个坐标的差来表示 A B = B − A AB=B-A AB=B−A一开始看有点蒙蔽,代入这个等式后,之后所有的推导都可以理解。这里就直接介绍一下结论 P i k ( t ) = { P i ( t ) k=0 ( 1 − t ) P i k − 1 ( t ) + t P i + 1 k − 1 ( t ) , k=1,2,3 … n;i=0,1,2 … n-k P_i^k(t)= \begin{cases} P_i(t) & \text {k=0} \\ (1-t)P_i^{k-1}(t)+tP_{i+1}^{k-1}(t), & \text{k=1,2,3…n;i=0,1,2…n-k} \end{cases} Pik(t)={
Pi(t)(1−t)Pik−1(t)+tPi+1k−1