opencv 傅立叶变换及其逆变换实例及其理解

本文介绍了傅立叶变换如何将图像从空间域转换到频率域,探讨了频率、幅度和能量的概念,并展示了使用OpenCV进行傅立叶变换及逆变换的代码与结果分析。原图、幅值图和逆变换后的图像显示,傅立叶变换能够突出图像的高频噪声和低频主要部分。
摘要由CSDN通过智能技术生成

傅立叶变换是把图像从空间域转化到频率域的变换。

空间域

一般的情况下,空间域的图像是f(x,y)=灰度级(0-255),形象一点就是一个二维矩阵,每个坐标对应一个颜色值。

频率域

先介绍几个概念

频率:对于图像来说可以指图像颜色值的梯度,即灰度级的变化速度

幅度:可以简单的理解为是频率的权,即该频率所占的比例

能量=幅度(可能不太准确)

变换结果为F(u,v)

F代表幅度值,u代表x方向的频率,v代表y方向的频率

一般会对变换结果进行一定的处理,以便以图片的形式展现,结果就是幅度值被当作灰度级,亮的地方表示能量高

图像的主要部分集中在低频部分,边界和噪声主要集中在高频部分

由于图像变换的结果原点在边缘部分,不容易显示,所以会将原点移动到中心部分。

那么结果便是中间一个亮点朝着周围发散开来,越远离中心位置的能量越低(越暗)。

接下来展示一下代码

 


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值