目标检测制作数据集时画框的原则

数据标注在深度学习中至关重要,本文详细介绍了目标检测的标注规则:贴边规则要求框紧贴物体边缘;重叠规则说明了部分遮挡物体的处理方式;独立规则强调每个目标需单独标注;不框规则规定模糊不清或不符合规则的目标不应标注;边界检查避免框坐标位于图像边界;小目标规则指出即使微小目标也应标注,视算法需求而定。这些规范有助于提高模型的识别准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、标注通用规则

数据标注是通过人工把需要识别和分辨的数据贴上标签。深度神经网络学习这些标注数据的特征,最终实现自主识别的功能。下面介绍几个目标检测中的标注通用规则:

  • 1、贴边规则:标注框需紧贴目标物体的边缘进行画框标注,不可框小或框大。
  • 2、重叠规则:当两个目标物体有重叠的时候,只要不是遮挡超过一半的就可以框的(遮挡范围需要根据算法识别情况制定),允许两个框有重叠的部分。如果其中一个物体挡住另一个物体一部分,框的时候就需要对另一个物体的形状进行脑补完整然后框起来即可。
  • 3、独立规则:每一个目标物体均需要单独拉框,比如下图中三瓶水不能只拉一个框,而是要将三个目标分别拉框。
  • 4、不框规则:图像模糊不清的不框,太暗和曝光过度的不框,不符合项目特殊规则的不框。
  • 5、边界检查:确保框坐标不在图像边界上,防止载入数据或者数据扩展过程出现越界报错。
  • 6、小目标规则:不同的算法对小目标的检测效果不同,对于小目标只要人眼能分清,都应该标出来。根据算法的需求,去决定是否启用这些样本参与训练。

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值