如何在分割中保持拓扑不变

TEDS-Net是一种新型的深度学习网络,旨在解决传统方法在解剖学分割中忽视精确拓扑的问题。通过引入额外的修正以保证微分同胚变换,该网络能够在保持拓扑不变的同时,不牺牲分割质量。在2D心脏数据集上的实验显示,TEDS-Net在实现100%拓扑不变的同时,其性能优于UNet,且不降低Hausdorff Distance或dice得分。

文章《TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee Topology Preservation in Segmentations》读书笔记

在空间变换中加强微分同胚可以保证分割中的拓扑不变

对于重要的解剖学分割来说,精确的拓扑是很关键的,但是在传统的深度学习算法中这一点经常会被忽略。文章提出了TEDS-Net,一个能保证精确拓扑结构的分割方法。

实际上,很多微分同胚场的表示方法(例如线性插值)因为使用有限的参数和采样,会破坏微分同胚的理论假设。在这里我们会引入额外的修正来保证更严格的微分同胚变换。

我们提出的网络TEDS-Net会学习如何利用期待的托盘特征来对一个二值先验mask进行变换,以完成分割任务。在一个开源2D心脏数据集上进行心肌分割的验证,相比于UNet 90%的拓扑不变的准确率,TEDS-Net在100%拓扑不变的情况下,不会损失Hausdorff Distance或者dice。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值