文章《TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee Topology Preservation in Segmentations》读书笔记
在空间变换中加强微分同胚可以保证分割中的拓扑不变
对于重要的解剖学分割来说,精确的拓扑是很关键的,但是在传统的深度学习算法中这一点经常会被忽略。文章提出了TEDS-Net,一个能保证精确拓扑结构的分割方法。
实际上,很多微分同胚场的表示方法(例如线性插值)因为使用有限的参数和采样,会破坏微分同胚的理论假设。在这里我们会引入额外的修正来保证更严格的微分同胚变换。
我们提出的网络TEDS-Net会学习如何利用期待的托盘特征来对一个二值先验mask进行变换,以完成分割任务。在一个开源2D心脏数据集上进行心肌分割的验证,相比于UNet 90%的拓扑不变的准确率,TEDS-Net在100%拓扑不变的情况下,不会损失Hausdorff Distance或者dice。