鱼眼相机模型

 

 

 为了将尽可能大的场景投影到有限的图像平面内,鱼眼相机会按照一定的投影函数来设计,如上图 (a) 所示。根据投影函数的不同,鱼眼相机的设计模型大致能被分为五种:透视投影(即针孔相机模型)、等积投影、等距投影、体视投影、正交投影。

 图(b)根据投影函数的不同,鱼眼相机的设计模型大致能被分为五种:透视投影、等积投影、等距投影、体视投影、正交投影,最常用的是等距投影模型,即r=fθ

但投影模型这么多是不利于自动标定的,用r 关于θ 的泰勒展开式来近似表示,这么做会带来一些精度损失,但基本可以忽略:

 这里θ 是入射光线∣PO1∣ 和光轴的夹角,即入射角,r表示相机空间任意点P在相机成像平面的像点p距离光心的距离∣O2p∣。成像点到光心的距离r rr是关于入射角θ \thetaθ的函数,但光线入射后以什么角度射出我们是难以计算的,因为鱼眼镜头是由一组透镜组成的,光线入射后的光路非常复杂,会在不同透镜间反复折射,可以看到论文的截图中入射光线经过O1 射到点p pp的光路画的也是一条曲线。

 畸变前的像点和畸变后的像点 到光心O的距离分别为r和rd 。实际中我们一般知道相机空间的点P坐标,如果不考虑畸变,知道相机焦距f的情况下,根据出射角等于入射角,畸变点的像点P0也很容易可以得到,所以r的值也知道,根据相似三角形原理:

 

 从而可以求得,一般记scale = rd / r 

 取k0 = 1 将rd代入eq2,有

  翻阅过opencv文档的小伙伴们会发现opencv文档中是这么写的:

(鱼眼相机的成像过程是已知入射角θ,求出射角θd)

 如果和上面我们推导出来的eq5比较,会得到

 的结论,正确理解应该是

 鱼眼镜头的畸变矫正
  谈畸变矫正之前先简单回顾一下畸变成像过程。
  相机坐标系存在一点P(x,y,z),现在要获得该点在鱼眼相机像平面的投影,需要经过如下步骤:

 

 

 

参考:鱼眼镜头的成像原理到畸变矫正(完整版)_Maples丶丶的博客-CSDN博客_鱼眼相机去畸变

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值