Eigen快速入门

Table of Contents

Eigen 矩阵定义

 Eigen 基础使用

Eigen 特殊矩阵生成

Eigen 矩阵分块

Eigen 矩阵元素交换

Eigen 矩阵转置

Eigen 矩阵乘积

Eigen 矩阵单个元素操作

Eigen 矩阵化简

Eigen 矩阵点乘

Eigen 矩阵类型转换

Eigen 求解线性方程组 Ax = b

Eigen 矩阵特征值

 

矩阵、向量初始化

    C++数组和矩阵转换

 矩阵基础操作

    点积和叉积

转置、伴随、行列式、逆矩阵

    计算特征值和特征向量

    解线性方程

   稀疏矩阵

Eigen: 简单用法-四元数,旋转矩阵,旋转向量

参考文献


 Eigen 是一个基于C++模板的线性代数库,直接将库下载后放在项目目录下,然后包含头文件就能使用,非常方便。此外,Eigen的接口清晰,稳定高效。

Eigen 矩阵定义

复制代码

#include <Eigen/Dense>

Matrix<double, 3, 3> A;               // Fixed rows and cols. Same as Matrix3d.
Matrix<double, 3, Dynamic> B;         // Fixed rows, dynamic cols.
Matrix<double, Dynamic, Dynamic> C;   // Full dynamic. Same as MatrixXd.
Matrix<double, 3, 3, RowMajor> E;     // Row major; default is column-major.
Matrix3f P, Q, R;                     // 3x3 float matrix.
Vector3f x, y, z;                     // 3x1 float matrix.
RowVector3f a, b, c;                  // 1x3 float matrix.
VectorXd v;                           // Dynamic column vector of doubles
// Eigen          // Matlab           // comments
x.size()          // length(x)        // vector size
C.rows()          // size(C,1)        // number of rows
C.cols()          // size(C,2)        // number of columns
x(i)              // x(i+1)           // Matlab is 1-based
C(i,j)            // C(i+1,j+1)       //

复制代码

 Eigen 基础使用

复制代码

// Basic usage
// Eigen        // Matlab           // comments
x.size()        // length(x)        // vector size
C.rows()        // size(C,1)        // number of rows
C.cols()        // size(C,2)        // number of columns
x(i)            // x(i+1)           // Matlab is 1-based
C(i, j)         // C(i+1,j+1)       //

A.resize(4, 4);   // Runtime error if assertions are on.
B.resize(4, 9);   // Runtime error if assertions are on.
A.resize(3, 3);   // Ok; size didn't change.
B.resize(3, 9);   // Ok; only dynamic cols changed.
                  
A << 1, 2, 3,     // Initialize A. The elements can also be
     4, 5, 6,     // matrices, which are stacked along cols
     7, 8, 9;     // and then the rows are stacked.
B << A, A, A;     // B is three horizontally stacked A's.
A.fill(10);       // Fill A with all 10's.

复制代码

Eigen 特殊矩阵生成

复制代码

// Eigen                            // Matlab
MatrixXd::Identity(rows,cols)       // eye(rows,cols)
C.setIdentity(rows,cols)            // C = eye(rows,cols)
MatrixXd::Zero(rows,cols)           // zeros(rows,cols)
C.setZero(rows,cols)                // C = ones(rows,cols)
MatrixXd::Ones(rows,cols)           // ones(rows,cols)
C.setOnes(rows,cols)                // C = ones(rows,cols)
MatrixXd::Random(rows,cols)         // rand(rows,cols)*2-1        // MatrixXd::Random returns uniform random numbers in (-1, 1).
C.setRandom(rows,cols)              // C = rand(rows,cols)*2-1
VectorXd::LinSpaced(size,low,high)  // linspace(low,high,size)'
v.setLinSpaced(size,low,high)       // v = linspace(low,high,size)'

复制代码

Eigen 矩阵分块

复制代码

// Matrix slicing and blocks. All expressions listed here are read/write.
// Templated size versions are faster. Note that Matlab is 1-based (a size N
// vector is x(1)...x(N)).
// Eigen                           // Matlab
x.head(n)                          // x(1:n)
x.head<n>()                        // x(1:n)
x.tail(n)                          // x(end - n + 1: end)
x.tail<n>()                        // x(end - n + 1: end)
x.segment(i, n)                    // x(i+1 : i+n)
x.segment<n>(i)                    // x(i+1 : i+n)
P.block(i, j, rows, cols)          // P(i+1 : i+rows, j+1 : j+cols)
P.block<rows, cols>(i, j)          // P(i+1 : i+rows, j+1 : j+cols)
P.row(i)                           // P(i+1, :)
P.col(j)                           // P(:, j+1)
P.leftCols<cols>()                 // P(:, 1:cols)
P.leftCols(cols)                   // P(:, 1:cols)
P.middleCols<cols>(j)              // P(:, j+1:j+cols)
P.middleCols(j, cols)              // P(:, j+1:j+cols)
P.rightCols<cols>()                // P(:, end-cols+1:end)
P.rightCols(cols)                  // P(:, end-cols+1:end)
P.topRows<rows>()                  // P(1:rows, :)
P.topRows(rows)                    // P(1:rows, :)
P.middleRows<rows>(i)              // P(i+1:i+rows, :)
P.middleRows(i, rows)              // P(i+1:i+rows, :)
P.bottomRows<rows>()               // P(end-rows+1:end, :)
P.bottomRows(rows)                 // P(end-rows+1:end, :)
P.topLeftCorner(rows, cols)        // P(1:rows, 1:cols)
P.topRightCorner(rows, cols)       // P(1:rows, end-cols+1:end)
P.bottomLeftCorner(rows, cols)     // P(end-rows+1:end, 1:cols)
P.bottomRightCorner(rows, cols)    // P(end-rows+1:end, end-cols+1:end)
P.topLeftCorner<rows,cols>()       // P(1:rows, 1:cols)
P.topRightCorner<rows,cols>()      // P(1:rows, end-cols+1:end)
P.bottomLeftCorner<rows,cols>()    // P(end-rows+1:end, 1:cols)
P.bottomRightCorner<rows,cols>()   // P(end-rows+1:end, end-cols+1:end)

复制代码

Eigen 矩阵元素交换

// Of particular note is Eigen's swap function which is highly optimized.
// Eigen                           // Matlab
R.row(i) = P.col(j);               // R(i, :) = P(:, i)
R.col(j1).swap(mat1.col(j2));      // R(:, [j1 j2]) = R(:, [j2, j1])

Eigen 矩阵转置

复制代码

// Views, transpose, etc; all read-write except for .adjoint().
// Eigen                           // Matlab
R.adjoint()                        // R'
R.transpose()                      // R.' or conj(R')
R.diagonal()                       // diag(R)
x.asDiagonal()                     // diag(x)
R.transpose().colwise().reverse(); // rot90(R)
R.conjugate()                      // conj(R)

复制代码

Eigen 矩阵乘积

复制代码

// All the same as Matlab, but matlab doesn't have *= style operators.
// Matrix-vector.  Matrix-matrix.   Matrix-scalar.
y  = M*x;          R  = P*Q;        R  = P*s;
a  = b*M;          R  = P - Q;      R  = s*P;
a *= M;            R  = P + Q;      R  = P/s;
                   R *= Q;          R  = s*P;
                   R += Q;          R *= s;
                   R -= Q;          R /= s;

复制代码

Eigen 矩阵单个元素操作

复制代码

// Vectorized operations on each element independently
// Eigen                  // Matlab
R = P.cwiseProduct(Q);    // R = P .* Q
R = P.array() * s.array();// R = P .* s
R = P.cwiseQuotient(Q);   // R = P ./ Q
R = P.array() / Q.array();// R = P ./ Q
R = P.array() + s.array();// R = P + s
R = P.array() - s.array();// R = P - s
R.array() += s;           // R = R + s
R.array() -= s;           // R = R - s
R.array() < Q.array();    // R < Q
R.array() <= Q.array();   // R <= Q
R.cwiseInverse();         // 1 ./ P
R.array().inverse();      // 1 ./ P
R.array().sin()           // sin(P)
R.array().cos()           // cos(P)
R.array().pow(s)          // P .^ s
R.array().square()        // P .^ 2
R.array().cube()          // P .^ 3
R.cwiseSqrt()             // sqrt(P)
R.array().sqrt()          // sqrt(P)
R.array().exp()           // exp(P)
R.array().log()           // log(P)
R.cwiseMax(P)             // max(R, P)
R.array().max(P.array())  // max(R, P)
R.cwiseMin(P)             // min(R, P)
R.array().min(P.array())  // min(R, P)
R.cwiseAbs()              // abs(P)
R.array().abs()           // abs(P)
R.cwiseAbs2()             // abs(P.^2)
R.array().abs2()          // abs(P.^2)
(R.array() < s).select(P,Q);  // (R < s ? P : Q)

复制代码

Eigen 矩阵化简

复制代码

// Reductions.
int r, c;
// Eigen                  // Matlab
R.minCoeff()              // min(R(:))
R.maxCoeff()              // max(R(:))
s = R.minCoeff(&r, &c)    // [s, i] = min(R(:)); [r, c] = ind2sub(size(R), i);
s = R.maxCoeff(&r, &c)    // [s, i] = max(R(:)); [r, c] = ind2sub(size(R), i);
R.sum()                   // sum(R(:))
R.colwise().sum()         // sum(R)
R.rowwise().sum()         // sum(R, 2) or sum(R')'
R.prod()                  // prod(R(:))
R.colwise().prod()        // prod(R)
R.rowwise().prod()        // prod(R, 2) or prod(R')'
R.trace()                 // trace(R)
R.all()                   // all(R(:))
R.colwise().all()         // all(R)
R.rowwise().all()         // all(R, 2)
R.any()                   // any(R(:))
R.colwise().any()         // any(R)
R.rowwise().any()         // any(R, 2)

复制代码

Eigen 矩阵点乘

// Dot products, norms, etc.
// Eigen                  // Matlab
x.norm()                  // norm(x).    Note that norm(R) doesn't work in Eigen.
x.squaredNorm()           // dot(x, x)   Note the equivalence is not true for complex
x.dot(y)                  // dot(x, y)
x.cross(y)                // cross(x, y) Requires #include <Eigen/Geometry>

Eigen 矩阵类型转换

复制代码

 Type conversion
// Eigen                           // Matlab
A.cast<double>();                  // double(A)
A.cast<float>();                   // single(A)
A.cast<int>();                     // int32(A)
A.real();                          // real(A)
A.imag();                          // imag(A)
// if the original type equals destination type, no work is done

复制代码

Eigen 求解线性方程组 Ax = b

复制代码

// Solve Ax = b. Result stored in x. Matlab: x = A \ b.
x = A.ldlt().solve(b));  // A sym. p.s.d.    #include <Eigen/Cholesky>
x = A.llt() .solve(b));  // A sym. p.d.      #include <Eigen/Cholesky>
x = A.lu()  .solve(b));  // Stable and fast. #include <Eigen/LU>
x = A.qr()  .solve(b));  // No pivoting.     #include <Eigen/QR>
x = A.svd() .solve(b));  // Stable, slowest. #include <Eigen/SVD>
// .ldlt() -> .matrixL() and .matrixD()
// .llt()  -> .matrixL()
// .lu()   -> .matrixL() and .matrixU()
// .qr()   -> .matrixQ() and .matrixR()
// .svd()  -> .matrixU(), .singularValues(), and .matrixV()

复制代码

Eigen 矩阵特征值

复制代码

// Eigenvalue problems
// Eigen                          // Matlab
A.eigenvalues();                  // eig(A);
EigenSolver<Matrix3d> eig(A);     // [vec val] = eig(A)
eig.eigenvalues();                // diag(val)
eig.eigenvectors();               // vec
// For self-adjoint matrices use SelfAdjointEigenSolver<>

复制代码

 

矩阵、向量初始化

#include <iostream>
#include "Eigen/Dense"
using namespace Eigen;
int main()
{
    MatrixXf m1(3,4);   //动态矩阵,建立3行4列。
    MatrixXf m2(4,3);   //4行3列,依此类推。
    MatrixXf m3(3,3);

    Vector3f v1;        //若是静态数组,则不用指定行或者列
    /* 初始化 */
    Matrix3d m = Matrix3d::Random();
    m1 = MatrixXf::Zero(3,4);       //用0矩阵初始化,要指定行列数
    m2 = MatrixXf::Zero(4,3);
    m3 = MatrixXf::Identity(3,3);   //用单位矩阵初始化
    v1 = Vector3f::Zero();          //同理,若是静态的,不用指定行列数

    m1 << 1,0,0,1,      //也可以以这种方式初始化
        1,5,0,1,
        0,0,9,1;
    m2 << 1,0,0,
        0,4,0,
        0,0,7,
        1,1,1;
    //向量初始化,与矩阵类似
    Vector3d v3(1,2,3);
    VectorXf vx(30);
}

    C++数组和矩阵转换

使用Map函数,可以实现Eigen的矩阵和c++中的数组直接转换,语法如下:

//@param MatrixType 矩阵类型
//@param MapOptions 可选参数,指的是指针是否对齐,Aligned, or Unaligned. The default is Unaligned.
//@param StrideType 可选参数,步长
/*
    Map<typename MatrixType,
        int MapOptions,
        typename StrideType>
*/
    int i;
    //数组转矩阵
    double *aMat = new double[20];
    for(i =0;i<20;i++)
    {
        aMat[i] = rand()%11;
    }
    //静态矩阵,编译时确定维数 Matrix<double,4,5>
    Eigen:Map<Matrix<double,4,5> > staMat(aMat);


    //输出
    for (int i = 0; i < staMat.size(); i++)
        std::cout << *(staMat.data() + i) << " ";
    std::cout << std::endl << std::endl;


    //动态矩阵,运行时确定 MatrixXd
    Map<MatrixXd> dymMat(aMat,4,5);


    //输出,应该和上面一致
    for (int i = 0; i < dymMat.size(); i++)
        std::cout << *(dymMat.data() + i) << " ";
    std::cout << std::endl << std::endl;

    //Matrix中的数据存在一维数组中,默认是行优先的格式,即一行行的存
    //data()返回Matrix中的指针
    dymMat.data();

 矩阵基础操作

eigen重载了基础的+ - * / += -= = /= 可以表示标量和矩阵或者矩阵和矩阵

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
    //单个取值,单个赋值
    double value00 = staMat(0,0);
    double value10 = staMat(1,0);
    staMat(0,0) = 100;
    std::cout << value00 <<value10<<std::endl;
    std::cout <<staMat<<std::endl<<std::endl;
    //加减乘除示例 Matrix2d 等同于 Matrix<double,2,2>
    Matrix2d a;
     a << 1, 2,
     3, 4;
    MatrixXd b(2,2);
     b << 2, 3,
     1, 4;

    Matrix2d c = a + b;
    std::cout<< c<<std::endl<<std::endl;

    c = a - b;
    std::cout<<c<<std::endl<<std::endl;

    c = a * 2;
    std::cout<<c<<std::endl<<std::endl;

    c = 2.5 * a;
    std::cout<<c<<std::endl<<std::endl;

    c = a / 2;
    std::cout<<c<<std::endl<<std::endl;

    c = a * b;
    std::cout<<c<<std::endl<<std::endl;

    点积和叉积

#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
using namespace std;
int main()
{
    //点积、叉积(针对向量的)
    Vector3d v(1,2,3);
    Vector3d w(0,1,2);
    std::cout<<v.dot(w)<<std::endl<<std::endl;
    std::cout<<w.cross(v)<<std::endl<<std::endl;
}

 

转置、伴随、行列式、逆矩阵

小矩阵(4 * 4及以下)eigen会自动优化,默认采用LU分解,效率不高

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    Matrix2d c;
     c << 1, 2,
     3, 4;
    //转置、伴随
    std::cout<<c<<std::endl<<std::endl;
    std::cout<<"转置\n"<<c.transpose()<<std::endl<<std::endl;
    std::cout<<"伴随\n"<<c.adjoint()<<std::endl<<std::endl;
    //逆矩阵、行列式
    std::cout << "行列式: " << c.determinant() << std::endl;
    std::cout << "逆矩阵\n" << c.inverse() << std::endl;
}

    计算特征值和特征向量

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    //特征向量、特征值
    std::cout << "Here is the matrix A:\n" << a << std::endl;
    SelfAdjointEigenSolver<Matrix2d> eigensolver(a);
    if (eigensolver.info() != Success) abort();
     std::cout << "特征值:\n" << eigensolver.eigenvalues() << std::endl;
     std::cout << "Here's a matrix whose columns are eigenvectors of A \n"
     << "corresponding to these eigenvalues:\n"
     << eigensolver.eigenvectors() << std::endl;
}

    解线性方程

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    //线性方程求解 Ax =B;
    Matrix4d A;
    A << 2,-1,-1,1,
        1,1,-2,1,
        4,-6,2,-2,
        3,6,-9,7;

    Vector4d B(2,4,4,9);

    Vector4d x = A.colPivHouseholderQr().solve(B);
    Vector4d x2 = A.llt().solve(B);
    Vector4d x3 = A.ldlt().solve(B);    


    std::cout << "The solution is:\n" << x <<"\n\n"<<x2<<"\n\n"<<x3 <<std::endl;
}

   

除了colPivHouseholderQr、LLT、LDLT,还有以下的函数可以求解线性方程组,请注意精度和速度: 解小矩阵(4*4)基本没有速度差别
最小二乘求解

最小二乘求解有两种方式,jacobiSvd或者colPivHouseholderQr,4*4以下的小矩阵速度没有区别,jacobiSvd可能更快,大矩阵最好用colPivHouseholderQr

#include <iostream>
#include <Eigen/Dense>
using namespace std;
using namespace Eigen;
int main()
{
    MatrixXf A1 = MatrixXf::Random(3, 2);
    std::cout << "Here is the matrix A:\n" << A1 << std::endl;
    VectorXf b1 = VectorXf::Random(3);
    std::cout << "Here is the right hand side b:\n" << b1 << std::endl;
    //jacobiSvd 方式:Slow (but fast for small matrices)
    std::cout << "The least-squares solution is:\n"
    << A1.jacobiSvd(ComputeThinU | ComputeThinV).solve(b1) << std::endl;
    //colPivHouseholderQr方法:fast
    std::cout << "The least-squares solution is:\n"
    << A1.colPivHouseholderQr().solve(b1) << std::endl;
}

   稀疏矩阵

稀疏矩阵的头文件包括:

  

#include

typedef Eigen::Triplet<double> T;
std::vector<T> tripletList;
triplets.reserve(estimation_of_entries); //estimation_of_entries是预估的条目
for(...)
{
    tripletList.push_back(T(i,j,v_ij));//第 i,j个有值的位置的值
}
SparseMatrixType mat(rows,cols);
mat.setFromTriplets(tripletList.begin(), tripletList.end());
// mat is ready to go!

2.直接将已知的非0值插入

SparseMatrix<double> mat(rows,cols);
mat.reserve(VectorXi::Constant(cols,6));
for(...)
{
    // i,j 个非零值 v_ij != 0
    mat.insert(i,j) = v_ij;
}
mat.makeCompressed(); // optional

   稀疏矩阵支持大部分一元和二元运算:

sm1.real() sm1.imag() -sm1 0.5*sm1
sm1+sm2 sm1-sm2 sm1.cwiseProduct(sm2)
二元运算中,稀疏矩阵和普通矩阵可以混合使用

//dm表示普通矩阵
dm2 = sm1 + dm1;
也支持计算转置矩阵和伴随矩阵

 

Eigen: 简单用法-四元数,旋转矩阵,旋转向量


Eigen库是一个开源的C++线性代数库,它提供了快速的有关矩阵的线性代数运算,还包括解方程等功能。Eigen是一个用纯头文件搭建起来的库,这意味这你只要能找到它的头文件,就能使用它。Eigen头文件的默认位置是“/usr/include/eigen3”.

由于Eigen库相较于OpenCV中的Mat等库而言更加高效,许多上层的软件库也使用Eigen进行矩阵运算,比如SLAM中常用的g2o,Sophus等。此外Eigen库还被被用于Caffe,Tensorflow等许多深度学习相关的框架中。

  1. 刚体运动中的旋转通常可以由旋转矩阵,旋转向量和四元数等多种方式表示(具体的转换公式请参见这篇博客),在Eigen库中也有其对应的实现。本文主要介绍刚体运动时旋转矩阵,旋转向量和四元数的初始化以及相互转换在Eigen中的实现方式。

Eigen库中各种形式的表示如下:

旋转矩阵(3X3):Eigen::Matrix3d
旋转向量(3X1):Eigen::AngleAxisd
四元数(4X1):Eigen::Quaterniond
平移向量(3X1):Eigen::Vector3d
变换矩阵(4X4):Eigen::Isometry3d

以下是具体的实现代码eigen_geometry.cpp:

#include <iostream>
#include <Eigen/Dense>


using namespace std;
using namespace Eigen;

int main(int argc, char **argv) {



    //下面三个变量作为下面演示的中间变量

    AngleAxisd t_V(M_PI / 4, Vector3d(0, 0, 1));
    Matrix3d t_R = t_V.matrix();
    Quaterniond t_Q(t_V);


    //对旋转向量(轴角)赋值的三大种方法

    //1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化角轴
    AngleAxisd V1(M_PI / 4, Vector3d(0, 0, 1));//以(0,0,1)为旋转轴,旋转45度
    cout << "Rotation_vector1" << endl << V1.matrix() << endl;

    //2.使用旋转矩阵转旋转向量的方式

    //2.1 使用旋转向量的fromRotationMatrix()函数来对旋转向量赋值(注意此方法为旋转向量独有,四元数没有)
    AngleAxisd V2;
    V2.fromRotationMatrix(t_R);
    cout << "Rotation_vector2" << endl << V2.matrix() << endl;

    //2.2 直接使用旋转矩阵来对旋转向量赋值
    AngleAxisd V3;
    V3 = t_R;
    cout << "Rotation_vector3" << endl << V3.matrix() << endl;

    //2.3 使用旋转矩阵来对旋转向量进行初始化
    AngleAxisd V4(t_R);
    cout << "Rotation_vector4" << endl << V4.matrix() << endl;

    //3. 使用四元数来对旋转向量进行赋值

    //3.1 直接使用四元数来对旋转向量赋值
    AngleAxisd V5;
    V5 = t_Q;
    cout << "Rotation_vector5" << endl << V5.matrix() << endl;

    //3.2 使用四元数来对旋转向量进行初始化
    AngleAxisd V6(t_Q);
    cout << "Rotation_vector6" << endl << V6.matrix() << endl;


//------------------------------------------------------

    //对四元数赋值的三大种方法(注意Eigen库中的四元数前三维是虚部,最后一维是实部)

    //1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化四元数,即使用q=[cos(A/2),n_x*sin(A/2),n_y*sin(A/2),n_z*sin(A/2)]
    Quaterniond Q1(cos((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 1 * sin((M_PI / 4) / 2));//以(0,0,1)为旋转轴,旋转45度
    //第一种输出四元数的方式
    cout << "Quaternion1" << endl << Q1.coeffs() << endl;

    //第二种输出四元数的方式
    cout << Q1.x() << endl << endl;
    cout << Q1.y() << endl << endl;
    cout << Q1.z() << endl << endl;
    cout << Q1.w() << endl << endl;

    //2. 使用旋转矩阵转四元數的方式

    //2.1 直接使用旋转矩阵来对旋转向量赋值
    Quaterniond Q2;
    Q2 = t_R;
    cout << "Quaternion2" << endl << Q2.coeffs() << endl;


    //2.2 使用旋转矩阵来对四元數进行初始化
    Quaterniond Q3(t_R);
    cout << "Quaternion3" << endl << Q3.coeffs() << endl;

    //3. 使用旋转向量对四元数来进行赋值

    //3.1 直接使用旋转向量对四元数来赋值
    Quaterniond Q4;
    Q4 = t_V;
    cout << "Quaternion4" << endl << Q4.coeffs() << endl;

    //3.2 使用旋转向量来对四元数进行初始化
    Quaterniond Q5(t_V);
    cout << "Quaternion5" << endl << Q5.coeffs() << endl;



//----------------------------------------------------

    //对旋转矩阵赋值的三大种方法

    //1.使用旋转矩阵的函数来初始化旋转矩阵
    Matrix3d R1=Matrix3d::Identity();
    cout << "Rotation_matrix1" << endl << R1 << endl;

    //2. 使用旋转向量转旋转矩阵来对旋转矩阵赋值

    //2.1 使用旋转向量的成员函数matrix()来对旋转矩阵赋值
    Matrix3d R2;
    R2 = t_V.matrix();
    cout << "Rotation_matrix2" << endl << R2 << endl;

    //2.2 使用旋转向量的成员函数toRotationMatrix()来对旋转矩阵赋值
    Matrix3d R3;
    R3 = t_V.toRotationMatrix();
    cout << "Rotation_matrix3" << endl << R3 << endl;

    //3. 使用四元数转旋转矩阵来对旋转矩阵赋值

    //3.1 使用四元数的成员函数matrix()来对旋转矩阵赋值
    Matrix3d R4;
    R4 = t_Q.matrix();
    cout << "Rotation_matrix4" << endl << R4 << endl;

    //3.2 使用四元数的成员函数toRotationMatrix()来对旋转矩阵赋值
    Matrix3d R5;
    R5 = t_Q.toRotationMatrix();
    cout << "Rotation_matrix5" << endl << R5 << endl;

    return 0;


}

上述代码对应的CMakeLists.txt为:

CMAKE_MINIMUM_REQUIRED(VERSION 2.8)
project(useGeometry)
include_directories("/usr/include/eigen3")
add_executable(eigen_geometry eigen_geometry.cpp)
  1. 旋转矩阵(R),旋转向量(V)和四元数(Q)在Eigen中转换关系的总结:

旋转矩阵(R),旋转向量(V)和四元数(Q)在Eigen中转换关系图示

  1. 旋转矩阵(R),旋转向量(V)和四元数(Q)分别通过自身初始化自己的方式,也就是第一分部分代码对旋转矩阵(R),旋转向量(V)和四元数(Q)赋值的第一种方式。

    • R通过自身初始化的方法:
//1.使用旋转矩阵的函数来初始化旋转矩阵
Matrix3d R1=Matrix3d::Identity();
cout << "Rotation_matrix1" << endl << R1 << endl;
  • V通过自身初始化的方法:
//1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化角轴
AngleAxisd V1(M_PI / 4, Vector3d(0, 0, 1));//以(0,0,1)为旋转轴,旋转45度

cout << "Rotation_vector1" << endl << V1.matrix() << endl;
  • Q通过自身初始化的方法:
//1.使用旋转的角度和旋转轴向量(此向量为单位向量)来初始化四元数,即使用q=[cos(A/2),n_x*sin(A/2),n_y*sin(A/2),n_z*sin(A/2)]

Quaterniond Q1(cos((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 0 * sin((M_PI / 4) / 2), 1 * sin((M_PI / 4) / 2));//以(0,0,1)为旋转轴,旋转45度

cout << "Quaternion1" << endl << Q1.coeffs() << endl;

参考文献

http://eigen.tuxfamily.org/dox/AsciiQuickReference.txt

http://blog.csdn.net/augusdi/article/details/12907341

    http://www.cnblogs.com/python27/p/EigenQuickRef.html

    https://blog.csdn.net/r1254/article/details/47418871  

    https://blog.csdn.net/u011092188/article/details/77430988

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值