CNAS软件测试实验室公正性风险评估解读,风险评估方法、步骤

风险管理过程是实验室管理的重要组成部分,贯穿于实验室的全部活动过程之中。在CNAS-CL01:2018《检测和校准实验室能力认可准则》中,第4.1.4条规定:实验室应持续识别影响公正性的风险。这些风险应包括其活动、实验室的各种关系,或者实验室人员的关系而引发的风险。然而,这些关系并非一定会对实验室的公正性产生风险。在实际的评审过程中,该条款也是公正性方面最容易出现问题的地方。本文我们一起来梳理一下,CNAS软件测试实验室公正性风险评估怎么做。

4.1.4条款的“注”列出了可能影响实验室公正性风险的因素:危及实验室公正性的关系可能基于所有权、控制权、管理、人员、共享资源、财务、合同、市场营销(包括品牌)、支付销售佣金或其他引荐新客户的奖酬等。

实验室应持续识别影响公正性的风险,何谓“持续识别”?顾名思义,是在初次识别公正性风险后的再次识别。CNAS-CI01-G001《检验机构能力认可准则的应用说明》给出的解释很有借鉴作用,即:“持续不断”是指检验机构在任何可能发生影响检验机构公正性的事件时识别风险。

因此实验室首先应识别哪些风险因素会影响公正性,然后当这些风险因素出现、有变化或有新的风险因素出现时,或有可能发生影响公正性的事件时,进行风险识别,采取措施。例如实验室机构发生变化、所有权或控制权发生变化、有新进人员、有新客户产生、有营销行为时等等。

风险评估是风险管理过程中的一个重要环节,风险管理过程由:确定环境信息、风险评估、风险应对、监督检查等活动组成。确定环境信息是风险管理工作的基础,应从多种渠道获取相关信息,但须确保信 息的准确性、全面性。

一、CNAS软件测试实验室公正性风险评估方法:

针对具体的风险评估技术方法,在DB34/T 4433-2023《检测实验室公正性风险评估技术规范》中介绍了用于检测实验室公正性风险评估的失效模式和效应分析(FMEA)方法。

FMEA是一种归纳方法,从故障开始逐级分析原因、影响及应采取的应对措施,通过分析系统的各个失效模式并推断其对于整个系统的影响,考虑如何才能避免或减小损失。

FMEA 评估危险度常用方法包括:风险优先数、模式危险度指数、风险等级。检测实验室公正性风险风险评估一般会采用风险优先数模式。危险度由故障后果、可能性和发现问题的能力进行等级赋值并相乘来获得。危险度计算公式:危险度=S ×P×D

S--严重性的风险赋值;

P--可能性的风险赋值;

D--可控性的风险赋值。

二、CNAS软件测试实验室公正性风险评估步骤:

CNAS软件测试实验室风险评估包括制定风险评估工作方案、风险识别、风险分析和风险评价四个步骤。

1、 制定风险评估工作方案

为规范公正性风险识别、风险分析、风险评价活动,明确工作责任、工作重点和工作步骤,以持续开展风险评估工作,应对风险评估进行策划,制定风险评估工作方案。

2、风险识别

按检测实验室业务流程,包括但不限于从资质能力、合同评审、抽样、样品管理、实施检测、检测结果、保密、投诉等方面开展风险识别。

针对公正性方面的风险源主要有:实验室的活动情况,内部与外部组织架构,管理情况,公正性承诺,行业竞争压力程度,内部与外部关系,利益关联和输送,检测人员兼职。

各检测实验室所面临的内、外部环境不尽相同,实验室的资源、过程和管理体系存在差异,因而识别出的公正性风险应该是不尽相同的。

3、风险分析

风险分析应考虑导致风险的原因和风险源、风险事件的正面和负面的后果及其发生的可能性、影响后果和可能性的因素、不同风险及其风险源的相互关系以及风险的其他特性,还应考虑现有的管理措施及其效果和效率。开展分析时还应结合本机构的内外部环境、资源、过程和管理体系的实际情况。如需完整的公正性风险评估表可私信我获取。

4、风险评价

风险评价是将风险分析的结果与风险准则比较,确定风险等级,以便做出风险应对的决策。检测实验室公正性风险的风险后果的严重性(S)、风险发生的可能性(P)和风险的可控性(D)赋值结果和危险度的计算结果可参见上面公正性风险评估表的“S”、“P”、“D”和“危险度S×P×D”。

风险评估之后,CNAS软件测试实验室需要根据实际情况编制风险应对措施、制定风险应对计划,做好后续的监督和检查。在整个过程中,应做好相关记录,必要时还要形成风险报告。风险评估报告可包括目标及范围、事件及风险等级、管理建议、结论等。

以上就是CNAS软件测试实验室公正性风险评估解读,风险评估方法、步骤的介绍,如需公正性风险评估模板资料可私信我获取。

(谢绝转载,更多内容可查看我的专栏)

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值