多元线性回归模型及stata实现:总论
一、模型
Y=β0+β1X1+β2X2+⋯+βnXn+e
- Y: Dependent variable(因变量、应变量、反应变量、响应变量、被解释变量等)
- X1、X2⋯Xn:Independent variable(自变量、解释变量、控制变量)
如果重点探究一个因素与另一个因素的作用时,纳入模型的其他X通常称为叫控制变量 - β1、β2⋯βn:偏回归系数、回归系数(每个βn表示控制其他X时,Xn每增加一个单位,对Y的边际效应)
- e: 残差项、残差、扰动项等(代表不包含在模型中的解释变量和其他一些随机因素对被解释变量的总影响项)
- β0,截距,常数项。表示所有自变量为0时的Y值。(有时候需要注意,如果自变量不可能等于0,这个值的意义需要考虑;如果需要真实的截距值,可以用Xi-Xmin,Xi-Xmean替代每个Xi。)
残差的性质非常重要
二、条件/假设
2.1 严格最小二乘估计(OLS)的条件和假设
- 假设1: 因变量为连续变量(二值、有序、计数等永其他模型)
- 假设2