目录
5.1 二元线性回归
y i = α + β x i 1 + γ x i 2 + ε i y_i=\alpha+\beta x_{i1}+\gamma x_{i2}+\varepsilon_i yi=α+βxi1+γxi2+εi
OLS估计量的最优化问题仍为残差平方和最小化:
m i n α ^ , β ^ , γ ^ ∑ i = 1 n e i 2 = ∑ i = 1 n ( y i − α ^ − β ^ x i 1 − γ ^ x i 2 ) 2 \mathop{min}\limits_{\hat\alpha,\hat\beta,\hat\gamma}\sum\limits_{i=1}^ne_i^2=\sum\limits_{i=1}^n(y_i-\hat\alpha-\hat\beta x_{i1}-\hat\gamma x_{i2})^2 α^,β^,γ^mini=1∑nei2=i=1∑n(yi−α^−β^xi1−γ^xi2)2
从几何上,找到一个回归平面,使得所有样本点离此回归平面最近
cobb_douglas.dta
柯布-道格拉斯生产函数: y t = α k t β l t γ e ε t y_t=\alpha k_t^\beta l_t^\gamma e^{\varepsilon_t} yt=αktβltγeεt
两边同时取对数,转化为线性模型: l n y t = l n α + β l n k t + γ l n l t + ε t ln{y_t}=ln{\alpha}+\beta ln{k_t}+\gamma ln{l_t}+\varepsilon_t lnyt=lnα+βlnkt+γlnlt+εt
二元回归的命令:regress y x1 x2
use cobb_douglas.dta,xlear
list
reg lny lnk lnl
predict lny1 //将lny的拟合值记为“lny1”
predict e,residual //计算残差,记为e,选择项“residual”表示计算残差,如果省略此选择项,则默认计算拟合值
list lny lny1 e
line lny lny1 year,lpattern(solid dash)
根据回归结果,可得样本回归平面: l n y t ^ = − 0.177 + 0.233 l n k t + 0.807 l n l t \widehat{ln{y_t}}=-0.177+0.233ln{k_t}+0.807ln{l_t} lnyt
=−0.177+0.233lnkt+0.807lnlt
产出对数的预测值与实际值相当吻合
5.2 多元线性回归模型
y i = β 1 x i 1 + β 2 x i 2 + … + β K x i K + ε i ( i = 1 , … , n ) y_i=\beta_1x_{i1}+\beta_2x_{i2}+\ldots+\beta_Kx_{iK}+\varepsilon_i\quad(i=1,\ldots,n) yi=β1xi1+β2xi2+…+βKxiK+εi(i=1,…,n)
绝大多数下,回归方程有常数项,故常令 x i 1 ≡ 1 x_{i1}\equiv1 xi1≡1,方程简化为
y i = β 1 + β 2 x i 2 + … + β K x i K + ε i y_i=\beta_1+\beta_2x_{i2}+\ldots+\beta_Kx_{iK}+\varepsilon_i yi=β1+β2xi2+…+βKxiK+εi
y i = ( 1 x i 2 … x i K ) ( β 1 β 2 ⋮ β K ) + ε i y_i=(1\quad x_{i2}\quad\ldots\quad x_{iK}) \begin{pmatrix} \beta_1\\ \beta_2\\\vdots\\ \beta_K \end{pmatrix} +\varepsilon_i yi=(1xi2…xiK)
β1β2⋮βK
+εi
定义列向量: x i = ( 1 x i 2 … x i K ) ⊤ \boldsymbol{x_i}=(1\quad x_{i2}\quad\ldots\quad x_{iK})^\top xi=(1xi2…xiK)⊤
参数向量: β = ( β 1 β 2 … β K ) ⊤ \boldsymbol{\beta}=(\beta_1 \quad\beta_2\quad \ldots\quad\beta_K)^\top β=(β1β2…βK)⊤
y i = x i ⊤ β + ε i y_i= \boldsymbol{x_i^\top \beta}+\varepsilon_i yi=xi⊤β+εi
向量 y ≡ ( y 1 y 2 ⋮ y n ) = ( x 1 ⊤ x 2 ⊤ ⋮ x n ⊤ ) β + ( ε 1 ε 2 ⋮ ε n ) = X β + ε \boldsymbol{y}\equiv \begin{pmatrix} y_1\\ y_2\\ \vdots\\ y_n \end{pmatrix} =\begin{pmatrix} \boldsymbol{x_1^\top}\\ \boldsymbol{x_2^\top}\\ \vdots\\ \boldsymbol{x_n^\top} \end{pmatrix}\boldsymbol{\beta}+ \begin{pmatrix} \varepsilon_1\\ \varepsilon_2\\ \vdots\\ \varepsilon_n \end{pmatrix}=\boldsymbol{X\beta+\varepsilon} y≡