目录
一、引言
多元线性回归模型是一种广泛应用于数据分析和预测的统计方法。它旨在建立一个线性方程,以描述多个自变量与一个因变量之间的关系。
二、多元线性回归模型
在理想情况下,模型应该满足一些假设:
- 线性假设:因变量与自变量之间的关系是线性的。
- 误差项的独立性:不同观测值的误差项相互独立。
- 误差项的均值为零:。
- 同方差性:误差项的方差在不同的自变量取值下是恒定的。
- 误差项服从正态分布:。
满足这些假设可以确保回归模型的有效性和统计推断的可靠性。
三、数据准备
我们使用的数据集名为 car_sales.dta
,其中包含了汽车价格(price
)、汽车马力(horsepower
)、汽车排量(displacement
)、汽车座位数(seats
)等变量。
use "car_sales.dta", clear
四、描述性统计分析
首先,对数据进行描述性统计,以初步了解各个变量的基本情况。