点集拓扑笔记(1)

第一章 拓扑空间

拓扑空间的原型是欧几里德空间 R n R^n Rn。然而,欧几里德空间具有许多与其拓扑无关的附加结构,例如度量、坐标、内积和方向。拓扑空间定义背后的想法是抛弃所有与连续映射无关的 R n R^n Rn属性,从而将连续性的概念提炼为其本质。

在高等微积分中,我们学习了连续映射的几个特征,其中包括:从 R n R^n Rn的一个开子集到 R m R^m Rm的映射 f f f是连续的,当且仅当 R m R^m Rm中任何开集 V V V的逆像 f − 1 ( V ) f^{- 1}\left( V \right) f1(V) R n R^n Rn是开的。这表明连续性可以仅用开集来定义。

为了公理化地定义开集,我们研究了 R n R^n Rn中开集的性质。回想一下,在R^n中,两点p和q之间的距离由下式给出:
d ( p , q ) = [ ∑ i = 1 n ( p i − q i ) 2 ] 1 / 2 d(p,q) = {\left[ {\sum\limits_{i = 1}^n {{{({p^i} - {q^i})}^2}} } \right]^{1/2}} d(p,q)=[i=1n(piqi)2]1/2
以及将中心为 p ∈ R n p∈R^n pRn、半径为 r > 0 r>0 r>0的开球 B ( p , r ) B(p,r) B(p,r)设为集合:
B ( p , r ) = { x ∈ R n ∣ d ( x , p ) < r } B(p,r) = \{ x \in {R^n}|d(x,p) < r\} B(p,r)={xRnd(x,p)<r}
对于 R n R^n Rn中的集合,如果 U U U中的每一个 p p p都存在一个中心为 p p p、半径为 r r r的开球 B ( p , r ) B(p,r) B(p,r),使得 B ( p , r ) ⊂ U B(p,r)⊂U B(p,r)U(图1),则 U U U是开的。显然,任意开集 U α {U_α} Uα的并是开的,但无限多个开集的交集不一定是开的。
图1.中的一个开集

图1. R n R^n Rn中的一个开集

例子:区间 [ ( − 1 ⁄ n , 1 ⁄ n ] ( n = 1 , 2 , 3 , ⋯ ) [(-1⁄n,1⁄n](n=1,2,3,⋯) [(1n,1n]n=1,2,3, R 1 R^1 R1都是开的,但它们的交点 ⋂ n = 1 ∞ [ − 1 / n , 1 / n ] \bigcap\limits_{n = 1}^{\infty}\left\lbrack {{{- 1}/n},{1/n}} \right\rbrack n=1[1/n,1/n] 是非开的单元素集 { 0 } \left\{ 0 \right\} {0}

事实上, R n R^n Rn中有限个开集的交集是开的。这就引出了集合上拓扑的定义。

定义1:集合 S S S上的拓扑是一个子集集合 T T T,集合 T T T中同时包含空集 ϕ ϕ ϕ和集合 S S S,使得 T T T对于任意并和有限交运算是封闭的。

即:如果对于索引集A中所有的 α α α,有 U α ∈ T U_α∈T UαT,则 ⋃ α ∈ A U α ∈ T {\bigcup\limits_{\alpha \in A}U_{\alpha}} \in \mathcal{T} αAUαT;如果 U 1 , ⋯ , U n ∈ T U_1,⋯,U_n∈T U1,,UnT,则 ⋂ i = 1 n U i ∈ T \bigcap\limits_{i = 1}^{n}{U_{i} \in \mathcal{T}} i=1nUiT

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值