智慧交通
可以从背景、方向、路径几个方向聊聊。
交通负责统筹>计算机负责AI落地研发>交通负责稳定baseline的实现>计算机负责应用开发
1.“智能交通领域”具体指什么
一般来说,越偏重于方法论本身的交通类研究,智能交通的色彩就越强;越偏重于政策、影响、法规、环境、行为的研究,相对智能交通的色彩就弱一些。
智能交通是个非常广泛的概念,比如从方法论的角度,涉及到优化理论、图论、数据科学、统计学习、交通流理论、仿真等;从场景的角度,涉及到道路交通、轨道交通、港口、机场等多个场景,而几乎每个场景,在国内的高校院系设置中,都至少是单独的院或者系。你可以把方法论和场景理解成经线和纬线,智能交通细分领域,大致是方法论经线和场景纬线的一个又一个结合点。事实上在一些学术会议上,可能是做近似方法论的人一起开一个会,比如机器学习方法论的场景在城市交通、机场、轨道的研究;做场景的人又开一个会,比如说做公交问题,分别从优化、数据科学、仿真等角度切入的。当然最常见的是做具体的细分研究问题,可能就是场景和方法论的一种混编,比如做交通韧性(Resilience),可能是用图论、优化做,也可能是数据驱动做,可能是城市交通场景,也可能是机场场景。
从学术界的角度说,以智能交通的顶刊:TR-Part C、IEEE TITS、IEEE ITS为例,顶会就是ITSC,你可以发现,研究问题是非常广泛的,基本主流交通大方向都可以涵盖,但研究方法比较集中在大数据、机器学习、统计学习、组合优化,创新主要来源于方法论和ICT(ICT的全称是Information and Communications Technology,被称为信息通信领域技术。简单来说,ICT=IT+CT。)驱动一些新场景上(往往新场景带来了新数据),一般来说这一类研究的”fancy感”来自于此。新数据、新方法、新场景、新模式构成了学界智能交通的基本逻辑,这部分可以看顶刊的Special Issue和Call for Paper感受下(Transportation Research Part C: Emerging Technologies - Journal - Elsevier),业内做的较为知名的比如港科杨海老师组,NUS孟强老师组,UW王印海老师组,UC Davi