21、视觉显著性计算及其应用

视觉显著性计算及其应用

1. 训练显著性模型时消除标签歧义

在训练视觉显著性模型时,大多数用户数据往往不准确或不充分,存在标签歧义问题。为解决这一问题,提出了两种方法。

1.1 处理视频注视点歧义

将稀疏的正样本和未标记数据嵌入到成本敏感的学习排序框架中,以此解决视频注视点的歧义。

1.2 处理图像注视点或标记矩形歧义

对于图像注视点或标记矩形的歧义,提出了多实例学习排序框架。该框架通过迭代恢复正确的实例标签并训练显著性模型,能够聚焦于真实目标和真实干扰项之间的相关性。

1.3 方法优势

大量实验和比较表明,这些方法在整体性能上有显著提升。估计的显著性图通常“噪声”更少,因为成功去除了伪目标;同时,由于去除了伪干扰项,整个显著对象能够更加突出。这些方法生成的显著性图有助于进一步的基于图像的应用,如对象分割或基于内容的图像检索。

2. 显著性应用概述

随着互联网的快速发展,图像和视频的数量呈爆炸式增长。为满足各种用户需求,有必要开发智能的计算机视觉和多媒体应用。视觉显著性在这些智能应用中起着重要作用,原因如下:
- 从视觉显著性的定义来看,显著子集对应于重要的图像或视频内容。关注这些显著子集,处理结果可以与图像和视频的主要内容紧密相关。
- 有趣的目标在视觉上是显著的,因此视觉显著性在一定程度上可以反映用户的兴趣。强调显著内容,应用程序可以根据用户的兴趣提供针对性的服务。

下面将介绍六类基于显著性的应用,包括重新定位、广告、检索、摘要、压缩和识别。

3. 重新定位

需求响应动态冰蓄冷系统与需求响应策略的优化研究(Matlab代码实现)内容概要:本文围绕需求响应动态冰蓄冷系统及其优化策略展开研究,结合Matlab代码实现,探讨了在电力需求侧管理背景下,冰蓄冷系统如何通过优化运行策略参与需求响应,以实现削峰填谷、降低用电成本和提升能源利用效率的目标。研究内容包括系统建模、负荷预测、优化算法设计(如智能优化算法)以及多场景仿真验证,重点分析不同需求响应机制下系统的经济性和运行特性,并通过Matlab编程实现模型求解与结果可视化,为实际工程应用提供理论支持和技术路径。; 适合人群:具备一定电力系统、能源工程或自动化背景的研究生、科研人员及从事综合能源系统优化工作的工程师;熟悉Matlab编程且对需求响应、储能优化等领域感兴趣的技术人员。; 使用场景及目标:①用于高校科研中关于冰蓄冷系统与需求响应协同优化的课题研究;②支撑企业开展楼宇能源管理系统、智慧园区调度平台的设计与仿真;③为政策制定者评估需求响应措施的有效性提供量化分析工具。; 阅读建议:建议读者结合文中Matlab代码逐段理解模型构建与算法实现过程,重点关注目标函数设定、约束条件处理及优化结果分析部分,同时可拓展应用其他智能算法进行对比实验,加深对系统优化机制的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值