【机器学习】求解逻辑回归参数(梯度上升算法和牛顿法)

回顾

这篇博客【链接】我们简单介绍了逻辑回归模型,留下了一个问题:怎么求解使 J(θ) J ( θ ) 最大的 θ θ 值呢?

J(θ)=i=1m(y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))) J ( θ ) = ∑ i = 1 m ( y ( i ) l o g h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) )

前面我们提到了用梯度上升法和牛顿法。那么什么是梯度上升法和牛顿法呢?

梯度上升算法

由于 J(θ) J ( θ ) 过于复杂,我们从一个简单的函数求极大值说起。
一元二次函数

f(x)=x2+4x f ( x ) = − x 2 + 4 x

图像如下:
这里写图片描述

根据高中所学知识:
1. 求极值,先求函数的导数

f(x)=2x+4 f ′ ( x ) = − 2 x + 4

2. 令导数为0,可求出 x=2 x = 2 即取得函数 f(x) f ( x ) 的极大值。极大值等于 f(2)=4 f ( 2 ) = 4

但是真实环境中的函数不会像上面这么简单,就算求出了函数的导数,也很难精确计算出函数的极值。此时我们就可以用迭代的方法来做。就像爬坡一样,一点一点逼近极值。这种寻找最佳拟合参数的方法,就是最优化算法。爬坡这个动作用数学公式表达即为:

xi+1=xi+αf(xi)xi x i + 1 = x i + α ∂ f ( x i ) ∂ x i

其中, α α 为步长,也就是学习速率,控制更新的幅度。效果如下图:
这里写图片描述

比如从(0,0)开始,迭代路径就是1->2->3->4->…->n,直到求出的x为函数极大值的近似值,停止迭代。
这一过程,就是梯度上升算法。那么同理, J(θ) J ( θ ) 这个函数的极值,也可以这么求解。公式可以写为:

θj:=θj+αJ(θ)θj θ j := θ j + α ∂ J ( θ ) ∂ θ j

那么,我们现在只要求出 J(θ) J ( θ ) 的偏导,就可以利用梯度上升算法求解 J(θ) J ( θ ) 的极大值了。

J(θ)=i=1m{y(i)loghθ(x(i))+(1y(i))log(1hθ(x(i)))} J ( θ ) = ∑ i = 1 m { y ( i ) l o g h θ ( x ( i ) ) + ( 1 − y ( i ) ) l o g ( 1 − h θ ( x ( i ) ) ) }

hθ(x)=g(θTx)=11+eθTx h θ ( x ) = g ( θ T x ) = 1 1 + e − θ T x

令:
g(z)=11+ez g ( z ) = 1 1 + e − z

求导:
g(z)=ez(1+ez)2=11+ezez1+ez=11+ez(111+ez)=g(z)(1g(z)) g ′ ( z ) = e − z ( 1 + e − z ) 2 = 1 1 + e − z ∗ e − z 1 + e − z = 1 1 + e − z ∗ ( 1 − 1 1 + e − z ) = g ( z ) ∗ ( 1 − g ( z ) )

可得:
g(θTx)=g(θTx)(1g(θTx)) g ′ ( θ T x ) = g ( θ T x ) ∗ ( 1 − g ( θ T x ) )

J(θ) J ( θ ) 的 偏 导

J(θ)θj=i=1m(y(i)hθ(x(i))1y(i)1hθ(x(i)))hθ(x(i))θj ∂ J ( θ ) ∂ θ j = ∑ i = 1 m ( y ( i ) h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ) ∗ ∂ h θ ( x ( i ) ) ∂ θ j

=i=1m(y(i)g(θTx(i))1y(i)1g(θTx(i)))g(θTx(i))θj = ∑ i = 1 m ( y ( i ) g ( θ T x ( i ) ) − 1 − y ( i ) 1 − g ( θ T x ( i ) ) ) ∗ ∂ g ( θ T x ( i ) ) ∂ θ j

=i=1m(y(i)g(θTx(i))1y(i)1g(θTx(i)))g(θTx(i))(1g(θTx(i)))θTx(i)θj = ∑ i = 1 m ( y ( i ) g ( θ T x ( i ) ) − 1 − y ( i ) 1 − g ( θ T x ( i ) ) ) ∗ g ( θ T x ( i ) ) ∗ ( 1 − g ( θ T x ( i ) ) ) ∗ ∂ θ T x ( i ) ∂ θ j

其中:
θTx(i)θj=(θ1x(i)1+θ2x(i)2+θ3x(i)3+...+θnx(i)n)θj=x(i)j ∂ θ T x ( i ) ∂ θ j = ∂ ( θ 1 x 1 ( i ) + θ 2 x 2 ( i ) + θ 3 x 3 ( i ) + . . . + θ n x n ( i ) ) ∂ θ j = x j ( i )

=i=1m{y(i)(1g(θTx(i)))(1y(i))(g(θTx(i))}x(i)j=i=1m(y(i)g(θTx(i)))x(i)j 上 式 = ∑ i = 1 m { y ( i ) ( 1 − g ( θ T x ( i ) ) ) − ( 1 − y ( i ) ) ( g ( θ T x ( i ) ) } ∗ x j ( i ) = ∑ i = 1 m ( y ( i ) − g ( θ T x ( i ) ) ) ∗ x j ( i )

综上:

θj:=θj+αi=1m(y(i)hθ(x(i)))x(i)j θ j := θ j + α ∑ i = 1 m ( y ( i ) − h θ ( x ( i ) ) ) ∗ x j ( i )

θj:=θj+α(y(i)hθ(x(i)))x(i)j θ j := θ j + α ( y ( i ) − h θ ( x ( i ) ) ) ∗ x j ( i )

牛顿法

同样,我们先来看个简单的例子。求函数值为0时的x的值。
用牛顿法迭代公式:

xn+1=xnf(xn)f(xn)xn+2=xn+1f(xn+1)f(xn+1) x n + 1 = x n − f ( x n ) f ′ ( x n ) x n + 2 = x n + 1 − f ( x n + 1 ) f ′ ( x n + 1 )

这里写图片描述

这个迭代 公式的意思就是:在 x=x1 x = x 1 时,求得 (x1,f(x1)) ( x 1 , f ( x 1 ) ) 的切线与x轴的交点为 x2 x 2 ,再求 (x2,f(x2)) ( x 2 , f ( x 2 ) ) 的切线与x轴的交点 x3 x 3 ,依次迭代,直到找到满足要求的点。

然而,对于 J(θ) J ( θ ) 我们需要求得一阶导数为0的点,那么牛顿法迭代公式可以更新为:

xn+1=xnJ(xn)J′′(xn)xn+2=xn+1J(xn+1)J′′(xn+1) x n + 1 = x n − J ′ ( x n ) J ″ ( x n ) x n + 2 = x n + 1 − J ′ ( x n + 1 ) J ″ ( x n + 1 )

拓展

在多元的情况下, J′′(xn)=H(θ^) J ″ ( x n ) = H ℓ ( θ ^ ) 海塞矩阵

H(θ^)=2Jθ1θ12Jθ2θ12Jθ1θ22Jθ2θ2 H ℓ ( θ ^ ) = [ ∂ 2 J ∂ θ 1 ∂ θ 1 ∂ 2 J ∂ θ 1 ∂ θ 2 ∂ 2 J ∂ θ 2 ∂ θ 1 ∂ 2 J ∂ θ 2 ∂ θ 2 ]

三阶海塞矩阵形式为:

H(θ^)=2Jθ1θ12Jθ2θ12Jθ3θ12Jθ1θ22Jθ2θ22Jθ3θ22Jθ1θ32Jθ2θ32Jθ3θ3 H ℓ ( θ ^ ) = [ ∂ 2 J ∂ θ 1 ∂ θ 1 ∂ 2 J ∂ θ 1 ∂ θ 2 ∂ 2 J ∂ θ 1 ∂ θ 3 ∂ 2 J ∂ θ 2 ∂ θ 1 ∂ 2 J ∂ θ 2 ∂ θ 2 ∂ 2 J ∂ θ 2 ∂ θ 3 ∂ 2 J ∂ θ 3 ∂ θ 1 ∂ 2 J ∂ θ 3 ∂ θ 2 ∂ 2 J ∂ θ 3 ∂ θ 3 ]

H(θ^)=i=1nhθ(xi)(1hθ(xi))xi,1xi,1, i=1nhθ(xi)(1hθ(xi))xi,2xi,1, i=1nhθ(xi)(1hθ(xi))xi,1, i=1nhθ(xi)(1hθ(xi))xi,1xi,2, i=1nhθ(xi)(1hθ(xi))xi,2xi,2, i=1nhθ(xi)(1hθ(xi))xi,2, i=1nhθ(xi)(1hθ(xi))xi,1i=1nhθ(xi)(1hθ(xi))xi,2,i=1nhθ(xi)(1hθ(xi))hθ(xi)=11+ezz=θ1xi,1+θ2xi,2+θ3 H ℓ ( θ ^ ) = [ ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 1 x i , 1 ,   ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 1 x i , 2 ,   ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 1 ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 2 x i , 1 ,   ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 2 x i , 2 ,   ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 2 , ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 1 ,   ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) x i , 2 ,   ∑ i = 1 n h θ ( x i ) ( 1 − h θ ( x i ) ) ] h θ ( x i ) = 1 1 + e − z z = θ 1 x i , 1 + θ 2 x i , 2 + θ 3

一阶导数

J=ni=1(yihθ(xi))xi,1ni=1(yihθ(xi))xi,2ni=1(yihθ(xi)) ∇ J = − ⟨ ∑ i = 1 n ( y i − h θ ( x i ) ) x i , 1 ∑ i = 1 n ( y i − h θ ( x i ) ) x i , 2 ∑ i = 1 n ( y i − h θ ( x i ) ) ⟩

注:
此外,还可以用sklearn自带函数求解逻辑回归参数
此三种方法的python3代码实现,点击这里,对比本文公式看

  • 3
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
由于题目比较复杂,我可以给出一些思路和参考代码,但是无法完成所有的任务。以下是我的建议: 1. 首先需要准备手写体数据集MINST,并将数字6的标签设为1,其他数字的标签设为0。 2. 实现Logistic回归模型,可以使用梯度下降算法牛顿法进行优化,具体实现可以参考吴恩达《机器学习》中的相关章节。 3. 将数据集分为训练集和测试集,使用训练集进行模型训练,测试集进行模型评估。 4. 计算准确率和F1得分,可以使用sklearn库中的函数进行计算。 5. 画ROC曲线图,可以使用sklearn库中的函数进行绘制。 以下是参考代码:(仅供参考,可能存在错误,请谨慎参考) ```python import numpy as np from sklearn.datasets import load_digits from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, auc import matplotlib.pyplot as plt # 加载MINST数据集 digits = load_digits() X = digits.data y = digits.target # 将数字6的标签设为1,其他数字的标签设为0 y = np.array([1 if label == 6 else 0 for label in y]) # 将数据集分为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 使用sklearn库中的LogisticRegression进行模型训练和评估 lr = LogisticRegression() lr.fit(X_train, y_train) y_pred = lr.predict(X_test) accuracy = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred) print("accuracy:", accuracy) print("f1 score:", f1) # 画ROC曲线图 y_score = lr.decision_function(X_test) fpr, tpr, thresholds = roc_curve(y_test, y_score) roc_auc = auc(fpr, tpr) plt.plot(fpr, tpr, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], 'k--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic example') plt.legend(loc="lower right") plt.show() ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值