基于体元的初始分割中心选择模型

本文探讨了K-means聚类算法中初始中心选择的重要性,并提出基于体元的初始分割中心选择模型。该模型通过计算点云范围、设置体元数量、统计点密度,选取密度最大前k个体元的中心作为初始聚类中心,以提升分割效果。附带实现代码和效果展示。

一、引言

在K-means 聚类算法中,初始中心的选择对分割效果产生会直接影响,好的初始中心选择是获得预期分割效果的重要前提条件,因此就有相关论文对初始聚类中心进行了探索。

基于体元的初始分割中心选择模型具体过程为:(1)计算点云的范围,也就是获取点云的立方体包围盒。(2)根据我们设置的体元数量来计算体元大小。(3)统计每个体元的点密度,获取密度最大的前k个体元。(4)计算密度最大的前k个体元中心,作为聚类初始分割中心,即提取完毕。

二、实现代码

VoxelInit.m

%基于体素栅格的初始分割中心选择模型
clc
clear
close all;

%获取点云数据
[fileName,pathName]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大鱼BIGFISH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值