cross entropy与softmax求导(1) 思路

softmax是向量函数,输入向量并输出另一个向量,

“对softmax求导”,到底是在对什么求导?

 

对向量函数求导 得到的是一个矩阵: (不要在意字母的含义) 

 

因为有多个输出,要明确的是:计算哪个输出元素的导数?

以及,由于softmax具有多个输入,所以也要明确:计算它(这个输出元素)关于哪个输入元素的偏导数?

求导在这里更具体的表述是: 求第 i 个输出关于第 j 个输入的偏导数

这样:

 

 

求导是为了配合cross entropy来进行backpropagation,

假设最后cross entropy中进行计算的one-hot向量的第 i 位为1,其余的为0,

我们只要求出 第 i 个输出关于 每一个输入元素的偏导数就可以了,

因为其他的输出都乘以0了,对loss没有贡献,

 

 

对于所有的输入元素,用 j 来表示输入元素的序号,这里又分两种情况,

(1) j 等于 i 时,即第 i 个输入变量 ;

(2) j 不等于 i 时;

 

这两种情况下,偏导数的公式是不同的

 j 等于 i 时,softmax分子分母都含有第 j 个输入元素,

 j 不等于 i 时,softmax只有分母含有第 j 个输入元素,

 

转载并自己发挥:https://blog.csdn.net/cassiePython/article/details/80089760

转载于:https://www.cnblogs.com/yummy-roast-duck/p/9638879.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值