loss函数涉及的softmax 、cross encropy和softmaxwithloss

相关内容参考:https://blog.csdn.net/u014380165/article/details/77284921

1、softmax 函数:

定义:

假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的Softmax值就可以用以上公式表示。也就是说,是该元素的指数,与所有元素指数和的比值。(是不是很简单)

知乎上有人用下图的方式解释了softmax函数:

总的来讲:就是把一堆实数的值映射到0-1区间,并且使他们的和为1。一般用来估计posterior probability,在多分类任务中有用到。sigmoid函数只能分两类,而softmax能分多类,softmax是sigmoid的扩展。

 

2、softmax、cross encropy、softmaxwithloss 原理和相互关系

先理清下从全连接层到损失层之间的计算。。

这里写图片描述

这张图的等号左边部分就是全连接层做的事,W是全连接层的参数,我们也称为权值,X是全连接层的输入,也就是特征。从图上可以看出特征X是N*1的向量,这是怎么得到的呢?这个特征就是由全连接层前面多个卷积层和池化层处理后得到的,假设全连接层前面连接的是一个卷积层,这个卷积层的输出是100个特征(也就是我们常说的feature map的channel为100),每个特征的大小是4*4,那么在将这些特征输入给全连接层之前会将这些特征flat成N*1的向量(这个时候N就是100*4*4=1600)。解释完X,再来看W,W是全连接层的参数,是个T*N的矩阵,这个N和X的N对应,T表示类别数,比如你是7分类,那么T就是7。我们所说的训练一个网络,对于全连接层而言就是寻找最合适的W矩阵。因此全连接层就是执行WX得到一个T*1的向量(也就是图中的logits[T*1]),这个向量里面的每个数都没有大小限制的,也就是从负无穷大到正无穷大。然后如果你是多分类问题,一般会在全连接层后面接一个softmax层,这个softmax的输入是T*1的向量,输出也是T*1的向量(也就是图中的prob[T*1],这个向量的每个值表示这个样本属于每个类的概率),只不过输出的向量的每个值的大小范围为0到1。

现在你知道softmax的输出向量是什么意思了,就是概率,该样本属于各个类的概率!

那么softmax执行了什么操作可以得到0到1的概率呢?先来看看softmax的公式(以前自己看这些内容时候对公式也很反感,不过静下心来看就好了):

这里写图片描述

公式非常简单,前面说过softmax的输入是WX,假设模型的输入样本是I,讨论一个3分类问题(类别用1,2,3表示),样本I的真实类别是2,那么这个样本I经过网络所有层到达softmax层之前就得到了WX,也就是说WX是一个3*1的向量,那么上面公式中的aj就表示这个3*1的向量中的第j个值(最后会得到S1,S2,S3);而分母中的ak则表示3*1的向量中的3个值,所以会有个求和符号(这里求和是k从1到T,T和上面图中的T是对应相等的,也就是类别数的意思,j的范围也是1到T)。因为e^x恒大于0,所以分子永远是正数,分母又是多个正数的和,所以分母也肯定是正数,因此Sj是正数,而且范围是(0,1)。如果现在不是在训练模型,而是在测试模型,那么当一个样本经过softmax层并输出一个T*1的向量时,就会取这个向量中值最大的那个数的index作为这个样本的预测标签。

因此我们训练全连接层的W的目标就是使得其输出的WX在经过softmax层计算后其对应于真实标签的预测概率要最高。

举个例子:假设你的WX=[1,2,3],那么经过softmax层后就会得到[0.09,0.24,0.67],这三个数字表示这个样本属于第1,2,3类的概率分别是0.09,0.24,0.67。

———————————–华丽的分割线——————————————

弄懂了softmax,就要来说说softmax loss了。 
那softmax loss是什么意思呢?如下:

这里写图片描述

首先L是损失。Sj是softmax的输出向量S的第j个值,前面已经介绍过了,表示的是这个样本属于第j个类别的概率。yj前面有个求和符号,j的范围也是1到类别数T,因此y是一个1*T的向量,里面的T个值,而且只有1个值是1,其他T-1个值都是0。那么哪个位置的值是1呢?答案是真实标签对应的位置的那个值是1,其他都是0。所以这个公式其实有一个更简单的形式:

这里写图片描述

当然此时要限定j是指向当前样本的真实标签。

来举个例子吧。假设一个5分类问题,然后一个样本I的标签y=[0,0,0,1,0],也就是说样本I的真实标签是4,假设模型预测的结果概率(softmax的输出)p=[0.1,0.15,0.05,0.6,0.1],可以看出这个预测是对的,那么对应的损失L=-log(0.6),也就是当这个样本经过这样的网络参数产生这样的预测p时,它的损失是-log(0.6)。那么假设p=[0.15,0.2,0.4,0.1,0.15],这个预测结果就很离谱了,因为真实标签是4,而你觉得这个样本是4的概率只有0.1(远不如其他概率高,如果是在测试阶段,那么模型就会预测该样本属于类别3),对应损失L=-log(0.1)。那么假设p=[0.05,0.15,0.4,0.3,0.1],这个预测结果虽然也错了,但是没有前面那个那么离谱,对应的损失L=-log(0.3)。我们知道log函数在输入小于1的时候是个负数,而且log函数是递增函数,所以-log(0.6) < -log(0.3) < -log(0.1)。简单讲就是你预测错比预测对的损失要大,预测错得离谱比预测错得轻微的损失要大。

———————————–华丽的分割线———————————–

理清了softmax loss,就可以来看看cross entropy了。 
corss entropy是交叉熵的意思,它的公式如下:

这里写图片描述

是不是觉得和softmax loss的公式很像。当cross entropy的输入P是softmax的输出时,cross entropy等于softmax loss。Pj是输入的概率向量P的第j个值,所以如果你的概率是通过softmax公式得到的,那么cross entropy就是softmax loss。

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值