【机器学习】——为什么softmax搭配cross entropy是解决分类问题的通用方案?

众所周知,softmax+cross entropy是在线性模型、神经网络等模型中解决分类问题的通用方案,但是为什么选择这种方案呢?它相对于其他方案有什么优势?笔者一直也困惑不解,最近浏览了一些资料,有一些小小心得,希望大家指正~

损失函数:交叉熵Cross Entropy

我们可以从三个角度来理解cross entropy的物理意义

从实例上直观理解

我们首先来看Cross Entropy 的公式:
假设存在两个分布 p p p q q q p p p为样本的真实分布, q q q为模型预测出的样本分布,则在给定的样本集 X X X上,交叉熵的计算方式为
L C E ( p , q ) = − ∑ x ∈ X p ( x ) l o g q ( x ) L_{CE}(p,q)=-\sum _{x\in X}p(x)logq(x) LCE(p,q)=xXp(x)logq(x)
通常情况下在线性模型、神经网络等模型中,关于样本的真实分布可以用one-hot的编码来表示,比如男、女分别可以用[0,1]和[1,0]来表示,同样的,C种类别的样本可以用长度为C的向量来表示,且一个样本的表示向量中有且仅有一个维度为1,其余为0。那会造成什么后果呢?我们来看一个例子,假设一个样本的真实label为 [ 0 , 0 , 0 , 1 , 0 ] [0,0,0,1,0] [0,0,0,1,0],预测的分布为 [ 0.02 , 0.02 , 0.02 , 0.9 , 0.04 ] [0.02,0.02,0.02,0.9,0.04] [0.02,0.02,0.02,0.9,0.04],则交叉熵为:
L C E = − 1 ∗ l o g 0.9 L_{CE}=-1*log0.9 LCE=1log0.9
如果预测分布为 [ 0.1 , 0.5 , 0.2 , 0.1 , 0.2 ] [0.1,0.5,0.2,0.1,0.2] [0.1,0.5,0.2,0.1,0.2],则交叉熵为:
L C E = − 1 ∗ l o g 0.1 L_{CE}=-1*log0.1 LCE=1log0.1
可以看出其实 L C E L_{CE} LCE只与label中1所对应下标的预测值有关,且该预测值越大, L C E L_{CE} LCE越小
只要label中1所对应下标的预测值越接近1,则损失函数越小,这在直观上就是符合我们对于损失函数的预期

交叉熵为什么比均方误差好

作为回归问题的常见损失函数,均方误差公式为 l o s s M S E ( y , t ) = 1 2 ∑ i = 1 n ( y i − t i ) 2 loss_{MSE}(y,t)=\frac{1}{2}\sum_{i=1}^{n}(y_i - t_i)^2 lossMSE(y,t)=21i=1n(yiti)2,好像也可以用来计算分类问题的损失函数,那它为什么不适合分类问题呢?我们再来看一个例子假设一个样本的真实label为 [ 0 , 0 , 0 , 1 , 0 ] [0,0,0,1,0] [0,0,0,1,0],预测的分布为 D 1 = [ 0.1 , 0.1 , 0.1 , 0.6 , 0.1 ] D_1 =[0.1,0.1,0.1,0.6,0.1] D1=[0.1,0.1,0.1,0.6,0.1],预测分布 D 2 = [ 0 , 0 , 0 , 0.6 , 0.4 ] D_2 =[0,0,0,0.6,0.4] D2=[0,0,0,0.6,0.4],此时 l o s s M S E D 1 &lt; l o s s M S E D 2 loss_{MSE}D_1 &lt; loss_{MSE}D_2 lossMSED1<lossMSED2 ,也就是说对于 l o s s M S E loss_{MSE} lossMSE而言,即使与label中1所对应下标的预测值是正确的,其他项预测值的分布也会影响损失的大小,这不符合我们对于分类问题损失函数的预期。

似然估计的视角

我们知道,对于一个多分类问题,给定样本 x x x,它的似然函数可以表示为
p ( t ∣ x ) = ∏ i = 1 C P ( t i ∣ x ) t i = ∏ i = 1 C y i t i p(t|x)=\prod_{i=1}^{C}P(t_i|x)^{t_i}=\prod_{i=1}^{C}y_i^{t_i} p(tx)=i=1CP(tix)t

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值