产品某精度属性的标准值为u,标准差为c(双侧检验)
从一批产品中抽取n个样品,均值为u1,问:在(1-a)%的置信度之下,样本是否合格
第一步:
选择样本估计量x‘=Ave(xi),x’~N(u,c^2/n)
设x‘的分布函数为F(x’)
第二步:
计算置信区间
计算x1,x2,其满足F(x1)=a/2,F(x2)=1-a/2
第三步:
判断u1是否落在F(x’)的置信区间[x1 x2]之中
总结:
此处判断一批产品是否合格的依据是抽样的均值落于样本估计量的置信区间
**第一步:**题目要求确定所用的样本均值的分布
**第二步:**根据置信度确定置信区间
**第三步:**判断样本均值是否落于置信区间中
补充:
也可将所求出的样本均值分布函数进行标准化的方法来处理
我们的目的是判断u1是否落于F(x’)置信区间之中
而判断u1是否落于F(x’)的置信区间之中
等价于
(u1-u)/sqrt(c^2/n)落于F(x’)标准化后的均值分布函数N(0,1)的置信区间之中
置信区间与置信度的关系
设(x~N(0,1))
P(置信区间下界 <= x<= 置信区间上界) = 置信度
也就是
P(-|(u1-u)/sqrt(c^ 2/n)|<= x <=|(u1-u)/sqrt(c^ 2/n)|)<=置信度时,说明|(u1-u)/sqrt(c^2/n)|落于置信区间之内,产品合格
否则产品不合格
以下判断产品合格写法与上面等价
P(x<=|(u1-u)/sqrt(c^2/n)|)<=置信度
P(x>|(u1-u)/sqrt(c^2/n)|)>1-置信度(常用)