统计学——全流程总结置信区间与假设检验

本文总结了统计学中的置信区间和假设检验概念,包括置信水平的含义、假设检验的基本流程,并详细阐述了一维和二维正态总体参数的检验方法,如z、t和χ2统计量的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 置信区间

点估计:估计总体参数的一个具体值。
区间估计:估计总体参数的一个区间。
置信区间:对于一个我们永远无法知道总体的的情况下,我们通常用样本估计总体,那么我们估计的总体参数会有一个误差范围,这个误差范围就是置信区间。比如估计平均值中,我们用中括号[a,b]表示样本估计总体平均值的误差范围的区间,由于a和b的确切数值取决于你希望自己对于“该区间包含总体均值”这一结果具有的可信程度,因此,[a,b]被称为置信区间。
置信水平:我们选择这个置信区间,目的是为了为了让“a和b之间包含总体平均值”这一结果具有特定的概率,这个概率就是置信水平。
假设我设定的置信水平是95%,也就是说如果我做100次抽样,会有95个置信区间包含了总体平均值。
在这里插入图片描述

2. 假设检验

假设检验基本流程:

  1. 提出假设
  2. 确定适当的检验统计量
  3. 规定显著性水平 α α α
  4. 计算检验统计量的值
  5. 作出统计决策

在这里插入图片描述

2.1 提出假设

什么是原假设?

待检验的假设,称之为0假设,标记为 H 0 H_0 H0;它是我们收集证据想反对的假设,一般会有=,>=或者<=。

什么是备择假设?

与原假设相对立的假设,称之为研究假设,标记为 H 1 H_1 H1;它是我们想支持的假设,一般有≠,>或者<。

假设的形式
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.2 确定统计量

检验统计量是用于假设检验决策的统计量。

一个正态总体参数的检验(以n=30为大小样本分界线):

在这里插入图片描述

待估参数为均值
  1. σ 2 σ^2 σ2已知的大样本和小样本: z z z统计量

z = X ˉ − μ σ / n ∽ N ( 0 , 1 ) z = \frac{\bar{X} - μ}{σ/\sqrt{n}} ∽N(0,1) z=σ/n XˉμN(0,1)

  • X ˉ \bar{X} Xˉ样本均值
  • μ μ μ总体均值
  • σ σ σ总体标准差
  • n n n样本大小
  1. 大样本 σ 2 σ^2 σ2未知: z z z统计量

z = X ˉ − μ S / n ∽ N ( 0 , 1 ) z = \frac{\bar{X} - μ}{S/\sqrt{n}} ∽N(0,1) z=S/n XˉμN(0,1)

  • S S S样本标准差
  1. 小样本 σ 2 σ^2 σ2未知: t t t统计量

t = X ˉ − μ S / n ∽ t ( n − 1 ) t = \frac{\bar{X} - μ}{S/\sqrt{n}} ∽t(n-1) t=S/n Xˉμt(n1)

待估参数为比例:大样本 z z z统计量

z = P − π π ( 1 − π ) n ∽ N ( 0 , 1 ) z = \frac{P- \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} ∽N(0,1) z=nπ(1π)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AIGC人工智残

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值