1. 置信区间
点估计:估计总体参数的一个具体值。
区间估计:估计总体参数的一个区间。
置信区间:对于一个我们永远无法知道总体的的情况下,我们通常用样本估计总体,那么我们估计的总体参数会有一个误差范围,这个误差范围就是置信区间。比如估计平均值中,我们用中括号[a,b]表示样本估计总体平均值的误差范围的区间,由于a和b的确切数值取决于你希望自己对于“该区间包含总体均值”这一结果具有的可信程度,因此,[a,b]被称为置信区间。
置信水平:我们选择这个置信区间,目的是为了为了让“a和b之间包含总体平均值”这一结果具有特定的概率,这个概率就是置信水平。
假设我设定的置信水平是95%,也就是说如果我做100次抽样,会有95个置信区间包含了总体平均值。
2. 假设检验
假设检验基本流程:
- 提出假设
- 确定适当的检验统计量
- 规定显著性水平 α α α
- 计算检验统计量的值
- 作出统计决策
2.1 提出假设
什么是原假设?
待检验的假设,称之为0假设,标记为 H 0 H_0 H0;它是我们收集证据想反对的假设,一般会有=,>=或者<=。
什么是备择假设?
与原假设相对立的假设,称之为研究假设,标记为 H 1 H_1 H1;它是我们想支持的假设,一般有≠,>或者<。
假设的形式
2.2 确定统计量
检验统计量是用于假设检验决策的统计量。
一个正态总体参数的检验(以n=30为大小样本分界线):
待估参数为均值:
- σ 2 σ^2 σ2已知的大样本和小样本: z z z统计量
z = X ˉ − μ σ / n ∽ N ( 0 , 1 ) z = \frac{\bar{X} - μ}{σ/\sqrt{n}} ∽N(0,1) z=σ/nXˉ−μ∽N(0,1)
- X ˉ \bar{X} Xˉ样本均值
- μ μ μ总体均值
- σ σ σ总体标准差
- n n n样本大小
- 大样本 σ 2 σ^2 σ2未知: z z z统计量
z = X ˉ − μ S / n ∽ N ( 0 , 1 ) z = \frac{\bar{X} - μ}{S/\sqrt{n}} ∽N(0,1) z=S/nXˉ−μ∽N(0,1)
- S S S样本标准差
- 小样本 σ 2 σ^2 σ2未知: t t t统计量
t = X ˉ − μ S / n ∽ t ( n − 1 ) t = \frac{\bar{X} - μ}{S/\sqrt{n}} ∽t(n-1) t=S/nXˉ−μ∽t(n−1)
待估参数为比例:大样本 z z z统计量
z = P − π π ( 1 − π ) n ∽ N ( 0 , 1 ) z = \frac{P- \pi}{\sqrt{\frac{\pi(1-\pi)}{n}}} ∽N(0,1) z=nπ(1−π)