CUDA查询和选取设备信息

CUDA查询设备信息


CUDA C中的cudaGetDeviceProperties函数可以很方便的获取到设备的信息,函数原型是:

cudaError_t CUDARTAPI cudaGetDeviceProperties(struct cudaDeviceProp *prop, int device);

第二个参数device是从0开始的设备的编号。

第一个参数prop指向的是一个cudaDeviceProp类型的结构。cudaDeviceProp结构中包含了设备的相关属性,下图是 其中的几个属性信息:



部分属性信息的相关说明如下:


(注:1MB=1024KB=1024*1024字节)


#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <iostream>

using namespace std;

int main()
{
	cudaDeviceProp deviceProp;
	int deviceCount;
	cudaError_t cudaError;
	cudaError = cudaGetDeviceCount(&deviceCount);
	for (int i = 0; i < deviceCount; i++)
	{
		cudaError = cudaGetDeviceProperties(&deviceProp, i);

		cout << "设备 " << i + 1 << " 的主要属性: " << endl;
		cout << "设备显卡型号: " << deviceProp.name << endl;
		cout << "设备全局内存总量(以MB为单位): " << deviceProp.totalGlobalMem / 1024 / 1024 << endl;
		cout << "设备上一个线程块(Block)中可用的最大共享内存(以KB为单位): " << deviceProp.sharedMemPerBlock / 1024 << endl;
		cout << "设备上一个线程块(Block)种可用的32位寄存器数量: " << deviceProp.regsPerBlock << endl;
		cout << "设备上一个线程块(Block)可包含的最大线程数量: " << deviceProp.maxThreadsPerBlock << endl;
		cout << "设备的计算功能集(Compute Capability)的版本号: " << deviceProp.major << "." << deviceProp.minor << endl;
		cout << "设备上多处理器的数量: " << deviceProp.multiProcessorCount << endl;
	}
	getchar();
	return 0;
}

运行输出的部分设备属性信息:




CUDA选取设备信息


系统中可能包含多个GPU,这种情况下,最好依据对GPU某些特定属性的需求,让程序自动选择执行速度最快的GUP。例如对于核函数与CUP之间需要进行密集交互的情况,要尽可能考虑在集成的GPU上运行。集成的GPU与CPU共享内存,数据交互效率更高。还有一些功能如双精度浮点运算只有在计算功能集的版本为1.3或者以上才具有,这种情况下就必须要选择版本号大于等于1.3的GPU。


CUDA提供了一个简便的方法来自动选择合适的GPU。以下以“要求设备的计算功能集的版本号为5.2”这个条件为例说明选择GPU的方法。

  • 1、设置需要的设备属性

定义一个cudaDeviceProp结构对象,设置需要的设备属性:

//定义需要的设备属性
	cudaDeviceProp devicePropDefined;
	memset(&devicePropDefined, 0, sizeof(cudaDeviceProp));  //设置devicepropDefined的值
	devicePropDefined.major = 5;
	devicePropDefined.minor = 2;


  • 2、调用cudaChooseDevice函数返回满足要求的设备ID

设置完所要求的的设备属性之后,把cudaDeviceProp结构的对象传递给cudaChooseDevice函数,cudaChooseDevice函数会查找机器上是否有满足所设置属性的设备,并返回设备编号:

cudaChooseDevice(&devicedChoosed, &devicePropDefined);  //查找符合要求的设备ID
	cout << "满足指定属性要求的设备的编号: " << devicedChoosed << endl;

  • 3、调用cudaSetDevice函数设置下文使用的设备编号

cudaSetDevice函数的作用是使输入ID代表的设备生效,之后所进行的CUDA操作就会在该设备上执行:

cudaError = cudaSetDevice(devicedChoosed); //设置选中的设备为下文的运行设备


以下是依据设定的属性选取设备的流程示例:

#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <iostream>

using namespace std;

int main()
{
	//定义需要的设备属性
	cudaDeviceProp devicePropDefined;
	memset(&devicePropDefined, 0, sizeof(cudaDeviceProp));  //设置devicepropDefined的值
	devicePropDefined.major = 5;
	devicePropDefined.minor = 2;

	int devicedChoosed;  //选中的设备ID
	cudaError_t cudaError;
	cudaGetDevice(&devicedChoosed);  //获取当前设备ID
	cout << "当前使用设备的编号: " << devicedChoosed << endl;

	cudaChooseDevice(&devicedChoosed, &devicePropDefined);  //查找符合要求的设备ID
	cout << "满足指定属性要求的设备的编号: " << devicedChoosed << endl;

	cudaError = cudaSetDevice(devicedChoosed); //设置选中的设备为下文的运行设备

	if (cudaError == cudaSuccess)
		cout << "设备选取成功!" << endl;
	else
		cout << "设备选取失败!" << endl;
	getchar();
	return 0;
}


检查和配置CUDA设备环境通常涉及以下几个步骤: 1. **检查硬件**:首先确保你的计算机确实安装了 NVIDIA 显卡并支持CUDA。可以在 NVIDIA 的官方网站下载 CUDA 驱动程序。 2. **安装CUDA**:下载并安装CUDA,安装过程中会自动检测和安装相关的CUDA Toolkit。记得保留好安装路径,以便后续使用。 3. **更新驱动程序**:确保显卡驱动是最新的,因为过旧的驱动可能会限制CUDA的性能或者导致一些兼容性问题。 4. **添加环境变量**: - 在Windows上,打开“控制面板” > “系统和安全” > “系统” > “高级系统设置”,点击“环境变量”按钮,然后在系统变量中添加: ``` CUDA_PATH: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vX.X (替换为你实际的CUDA安装路径) CUDA_BIN_PATH: %CUDA_PATH%\bin ``` 和 ``` CUDA_CUBIN_PATH: %CUDA_PATH%\libnvvm ``` - 在Linux或macOS上,你需要编辑`.bashrc`或`.zshrc`等shell配置文件,添加类似下面的内容: ```bash export CUDA_HOME=/usr/local/cuda-X.Y export PATH=$PATH:$CUDA_HOME/bin export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$CUDA_HOME/lib64 ``` 5. **验证环境设置**: - 运行命令 `nvidia-smi` 来查看CUDA设备状态以及显存信息。 - 使用 `python -c "import torch; print(torch.cuda.is_available())"` 检查Python是否能识别到CUDA。 6. **设置多GPU环境**(如有需要):在`os.environ['CUDA_VISIBLE_DEVICES']`中设置要使用的GPU ID,如上面提到的 `CUDA_VISIBLE_DEVICES=0,1` 表示使用第一和第二块GPU。 完成以上步骤后,你应该能够正常配置CUDA环境并根据需求在代码中选择合适的GPU。如果你遇到问题,还应该查阅相应的文档或在线教程以获取更多帮助。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值