2016 Multi-University Training Contest 2 Acperience

Deep neural networks (DNN) have shown significant improvements in several application domains including computer vision and speech recognition. In computer vision, a particular type of DNN, known as Convolutional Neural Networks (CNN), have demonstrated state-of-the-art results in object recognition and detection.

Convolutional neural networks show reliable results on object recognition and detection that are useful in real world applications. Concurrent to the recent progress in recognition, interesting advancements have been happening in virtual reality (VR by Oculus), augmented reality (AR by HoloLens), and smart wearable devices. Putting these two pieces together, we argue that it is the right time to equip smart portable devices with the power of state-of-the-art recognition systems. However, CNN-based recognition systems need large amounts of memory and computational power. While they perform well on expensive, GPU-based machines, they are often unsuitable for smaller devices like cell phones and embedded electronics.

In order to simplify the networks, Professor Zhang tries to introduce simple, efficient, and accurate approximations to CNNs by binarizing the weights. Professor Zhang needs your help.

More specifically, you are given a weighted vector  W=(w1,w2,...,wn) . Professor Zhang would like to find a binary vector  B=(b1,b2,...,bn)   (bi{+1,1})  and a scaling factor  α0  in such a manner that  WαB2  is minimum.

Note that   denotes the Euclidean norm (i.e.  X=x21++x2n , where  X=(x1,x2,...,xn) ).
 

Input
There are multiple test cases. The first line of input contains an integer  T , indicating the number of test cases. For each test case:

The first line contains an integers  n   (1n100000)  -- the length of the vector. The next line contains  n  integers:  w1,w2,...,wn   (10000wi10000) .
 

Output
For each test case, output the minimum value of  WαB2  as an irreducible fraction " p / q " where  p q  are integers,  q>0 .
 

Sample Input
  
  
3 4 1 2 3 4 4 2 2 2 2 5 5 6 2 3 4
 

Sample Output
  
  
5/1 0/1 10/1
 

Author

zimpha



展开式子, \left| W-\alpha B \right|^2=\displaystyle\alpha^2\sum_{i=1}^{n}b_i^2-2\alpha\sum_{i=1}^n{w_ib_i}+\sum_{i=1}^{n}w_i^2WαB2=α2i=1nbi22αi=1nwibi+i=1nwi2.

由于b_i\in {+1,-1}bi{+1,1}, 那么\displaystyle\sum_{i=1}^{n}b_i^2=ni=1nbi2=n, 显然c=\displaystyle\sum_{i=1}^{n}w_i^2c=i=1nwi2也是常数. 转化成求\displaystyle\alpha^2n-2\alpha\sum_{i=1}^n{w_ib_i}+cα2n2αi=1nwibi+c的最小值. 对于固定的\alpha>0α>0, 只要\displaystyle\sum_{i=1}^n{w_ib_i}i=1nwibi最大就好了. 显然b_i=sign(w_i)bi=sign(wi)的时候, \displaystyle\sum_{i=1}^n{w_ib_i}=\sum_{i=1}^{n}|w_i|i=1nwibi=i=1nwi最大. 进一步的, 上面显然是一个关于\alphaα的二次方程, 于是当\alpha=\frac{1}{n}\displaystyle\sum_{i=1}^n{w_ib_i}=\frac{1}{n}\displaystyle\sum_{i=1}^{n}{|w_i|}α=n1i=1nwibi=n1i=1nwi时, 取到最大值.

化简下, 可以得到最小值是\sum_{i=1}^n{w_i^2}-\frac{1}{n}(\displaystyle\sum_{i=1}^{n}|w_i|)^2i=1nwi2n1(i=1nwi)2

#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
ll a[100005];
ll gcd(ll a,ll b)
{
return b==0?a:gcd(b,a%b);
}
int main()
{
ll t,n;
scanf("%lld",&t);
while(t--)
{
scanf("%lld",&n);
ll s1=0,s2=0,sum=0;
for(int i=1;i<=n;i++)
{
scanf("%lld",&a[i]);
s1+=a[i]*a[i];
if(a[i]>=0)
sum+=a[i];
else
{
sum-=a[i];
}
}
s2=sum*sum;
ll t=gcd(n*s1-s2,n);
printf("%lld/%lld\n",(n*s1-s2)/t,n/t);
}
 } 
weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值