NetAug 韩松团队新作解决欠拟合问题

【GiantPandaCV导语】本文介绍的是韩松团队针对欠拟合问题提出的一种解决方案,在代价可接受范围内能够提升小模型的性能。

引入

专用于解决小型网络模型欠拟合 带来的问题,通过引入更大的模型包围住小模型从而得到额外的监督信息。欠拟合情况下使用正则化方法进行处理会导致性能更差。

NetAug适用场景:

  • 数据集量比较大

  • 模型参数量相对而言比较小

  • 由于模型容量有限导致的欠拟合问题

问题明确

  • 与知识蒸馏区别:

知识蒸馏相当于学习一个soft label(或者说learned label smoothing), 而NetAug主要强调处理欠拟合问题,通过增强小模型的模型宽度来获取更多监督信息。

  • 与普通正则化方法区别:

正则化方法有数据增强方法(Cutout,Mixup,AutoAug,RandAug)和Dropout系列(Dropout,StochasticDepth, SpatialDropout,DropBlock)。与这些解决过拟合正则化方法不同,NetAug主要关注欠拟合问题,进行数据增强反而会导致欠拟合问题。

核心方法

如上图所示,训练的过程中会引入比原先小模型更宽的一系列网络,用宽网络的监督信号来增强小模型的学习。

第一项是训练单个小网络需要的loss, 第二项是宽网络带来的辅助监督信息,其中$\alpha_i
$是缩放系数

宽网络获取方式:augmentation factor r和diversity factor s两个系数。

  • r 是用于选择最宽的边界,假设基础宽度为w,那么宽度选择范围为【w, rxw】

  • s则是控制采样频率,从w到rxw等距采样s个宽模型。

训练过程:

实际训练过程权重更新如下:

W t n + 1 = W t n − η ( ∂ L ( W t n ) ∂ W t n + α ∂ L ( [

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

*pprp*

如果有帮助可以打赏一杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值